• Title/Summary/Keyword: Low Power Protocol

Search Result 341, Processing Time 0.022 seconds

Implementation of Integrated Interface based on Wire and Wireless Dual Network for Ensuring the Reliability of Intelligent LED Lighting System (지능형 LED 조명 시스템의 신뢰성 확보를 위한 유무선 이중망 통합 인터페이스 구현)

  • Lee, Un-Seon;Park, Tae-Jin;Park, Man-Gon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.306-312
    • /
    • 2014
  • The ZigBee communication method, which is the most frequently applied to the LED lighting control system, has drawbacks of low-speed and low-capacity, and the communication failure possibility due to environmental influences is on the rise. Therefore, it is important to secure the communication reliability by applying an integrated interface with a wire-wireless dual-network. This paper developed a communication module, which has a platform converging and combining the ZigBee of USN environments with the PLC of power line communication environments, to implement a dualized communication interface system supporting the wire-wireless integrated protocol, and implemented a wire-wireless networking device and a control system software technology. As a result, it was automatically switched into the PLC communication within 4.4 seconds on average when there was an access failure in the ZigBee communication network, so a reliable communication network was built.

A Design of Voice Over Sensor Network (VoSN) Base Station with Multi-Channel Support (다중 채널을 지원하는 Voice over Sensor Network(VoSN) Base Station 설계)

  • Lee, Hoon Jae;Lee, Jae Hyoung;Kang, Min Soo;Cho, Sung Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.1
    • /
    • pp.90-96
    • /
    • 2014
  • IEEE802.15.4 that is a standard for sensor networks is mainly used the wireless personal area networks such as ZigBee networks and it features low-power, low-speed data communication. However, recently research for interworking sensor network based voice communication and Session Initiation Protocol (SIP) for long-range, multi-user support has been actively conducted. In this paper, we designed a integrated base station based existing systems for interworking sensor networks based voice communication and SIP. We measured number of packet and delay according to increase the number of users to evaluate the performance of designed Base Station.

Adaptive Power Saving Mechanism of Low Power Wake-up Receivers against Battery Draining Attack (배터리 소모 공격에 대응하는 저전력 웨이크업 리시버의 적응형 파워 세이빙 메커니즘)

  • So-Yeon Kim;Seong-Won Yoon;Il-Gu Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.3
    • /
    • pp.393-401
    • /
    • 2024
  • Recently, the Internet of Things (IoT) has been widely used in industries and daily life that directly affect human safety, life, and assets. However, IoT devices, which need to meet low-cost, lightweight, and low-power requirements, face a significant problem of shortened battery lifetime due to battery draining attacks and interference. To solve this problem, the 802.11ba standard for the Wake-up Receiver (WuR) has emerged, this feature is playing a crucial role in minimizing energy consumption. However, the WuR protocol did not consider security mechanisms in order to reduce latency and overhead. Therefore, in this study, anAdaptive Power Saving Mechanism (APSM) is proposed for low-power WuR to counter battery draining attacks. APSM can minimize abnormally occurring power consumption by exponentially increasing power-saving time in environments prone to attacks. According to experimental results, the proposed APSM improved energy consumption efficiency by a minimum of 13.77% compared to the traditional Legacy Power Saving Mechanism (LPSM) when attack traffic ratio is 10% or more of the total traffic.

Symptoms-Based Power-Efficient Communication Scheme in WBSN

  • Sasi, Juniven Isin D.;Yang, Hyunho
    • Smart Media Journal
    • /
    • v.3 no.1
    • /
    • pp.28-32
    • /
    • 2014
  • It is practical nowadays to automate data recording in order to prevent loss and tampering of records. There are existing technologies that satisfy this needs and one of them is wireless sensor networks (WSN). Wireless body sensor networks (WBSN) are wireless networks and information-processing systems which are deployed to monitor medical condition of patients. In terms of performance, WBSNs are restricted by energy, and communication between nodes. In this paper, we focused in improving the performance of communication to achieve less energy consumption and to save power. The main idea of this paper is to prioritize nodes that exhibit a sudden change of vital signs that could put the patient at risk. Cluster head is the main focus of this study in order to be effective; its main role is to check the sent data of the patient that exceeds threshold then transfer to the sink node. The proposed scheme implemented added a time-based protocol to sleep/wakeup mechanism for the sensor nodes. We seek to achieve a low energy consumption and significant throughput in this study.

Development of ZigBee Wireless Communication System for Remote Diagnosis in Distribution Power Lines (배전선로 원격 진단을 위한 ZigBee 무선통신 시스템 개발)

  • Lee, Kyeong-Seob;Chung, Dong-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.9
    • /
    • pp.602-606
    • /
    • 2015
  • This paper presents a ZigBee wireless communication system for remote diagnosis in overhead distribution power lines. The system is divided in three parts in the functional aspect - a host computer module, a remote controller module and a diagnostic system module. The host computer module designed as USB interface transmits control signals and receive data measured by sensor. The remote controller module operates the diagnostic system. Diagnostic system module communicates with internal main controller and host computer USB. Multiple communication channel is adopted for simultaneous operations of several diagnostic system. Dedicated protocol for each module is developed. The system is designed with a focus on low cost and small size suitable for lightweight and small diagnostic system.

Design of Sensor Network Security Model using Contract Net Protocol and DEVS Modeling (계약망 프로토콜과 DEVS 모델링을 통한 센서네트워크 보안 모델의 설계)

  • Hur, Suh Mahn;Seo, Hee Suk
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.4
    • /
    • pp.41-49
    • /
    • 2008
  • Sensor networks are often deployed in unattended environments, thus leaving these networks vulnerable to false data injection attacks in which an adversary injects forged reports into the network through compromised nodes. Such attacks by compromised sensors can cause not only false alarms but also the depletion of the finite amount of energy in a battery powered network. In order to reduce damage from these attacks, several security solutions have been proposed. Researchers have also proposed some techniques to increase the energy-efficiency of such security solutions. In this paper, we propose a CH(Cluster Header) selection algorithm to choose low power delivery method in sensor networks. The CNP(Contract Net Protocol), which is an approach to solve distribution problems, is applied to choose CHs for event sensing. As a result of employing CNP, the proposed method can prevent dropping of sensing reports with an insufficient number of message authentication codes during the forwarding process, and is efficient in terms of energy saving.

An Energy Efficient Routing Algorithm based on Center of Local Clustering in Wireless Sensor Networks (무선센서 네트워크에서의 지역-중앙 클러스터 라우팅 방법)

  • He, Jin Ming;Rhee, Chung-Sei
    • Convergence Security Journal
    • /
    • v.14 no.2
    • /
    • pp.43-50
    • /
    • 2014
  • Recently, lot of researches for the multi-level protocol have been done to balance the sensor node energy consumption of WSN and improve the node efficiency to extend the life of the entire network. Especially in multi-hop protocol, a variety of models have been proposed to improve energy efficiency and apply it to WSN protocol. In this paper, we analyze LEACH algorithm and propose new method based on center of local clustering routing algorithm in wireless sensor networks. We also perform NS-2 simulation to show the performance of our model.

Super Cluster based Routing Protocol in Sensor Network

  • Noh Jae-hwan;Lee Byeong-jik;Kim Kyung-jun;Lee Ick-soo;Lee Suk-gyu;Han Ki-jun
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.193-198
    • /
    • 2004
  • In variety of environments for applications, wireless sensor networks have received increasing attention in the recent few years. But, sensor nodes have many limitations including battery power and communication range. These networks require robust wireless communicant protocols that are energy efficient and provide low latency. In this paper, we propose new protocol as is defined SCP. The key idea of SCP is that only one node which is defined as a Super-Cluster Header sends the combined data to the BS. We evaluated the effectiveness of SCP through experiments which have several parameter violations. Simulation results shows that performance of SCP is through better than other legacy protocol within the framework of energy cost, life time of the sensor network and fair distribution of the energy consumption.

  • PDF

Capacity Analysis of UWB Networks in Three-Dimensional Space

  • Cai, Lin X.;Cai, Lin;Shen, Xuemin;Mark, Jon W.
    • Journal of Communications and Networks
    • /
    • v.11 no.3
    • /
    • pp.287-296
    • /
    • 2009
  • Although asymptotic bounds of wireless network capacity have been heavily pursued, the answers to the following questions are still critical for network planning, protocol and architecture design: Given a three-dimensional (3D) network space with the number of active users randomly located in the space and using the wireless communication technology, what are the expected per-flow throughput, network capacity, and network transport capacity? In addition, how can the protocol parameters be tuned to enhance network performance? In this paper, we focus on the ultra wideband (UWB) based wireless personal area networks (WPANs) and provide answers to these questions, considering the salient features of UWB communications, i.e., low transmission/interference power level, accurate ranging capability, etc. Specifically, we demonstrate how to explore the spatial multiplexing gain of UWB networks by allowing appropriate concurrent transmissions. Given 3D space and the number of active users, we derive the expected number of concurrent transmissions, network capacity and transport capacity of the UWB network. The results reveal the main factors affecting network (transport) capacity, and how to determine the best protocol parameters, e.g., exclusive region size, in order to maximize the capacity. Extensive simulation results are given to validate the analytical results.

ID-based Authenticated Key Agreement for Unbalanced Computing Environment (비대칭 컴퓨팅 환경을 위한 ID-기반의 인증된 키 동의 프로토콜)

  • Choi Kyu-young;Hwang Jung-yeon;Hong Do-won;Lee Dong-hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.1
    • /
    • pp.23-33
    • /
    • 2006
  • Key Agreement protocols are among the most basic and widely used cryptographic protocols. In this paper we present an efficient O-based authenticated key agreement (AKA) protocol by using bilinear maps, especially well suited to unbalanced computing environments : an ID-based AKA protocol for Server and Client. Particularly, considering low-power clients' devices, we remove expensive operations such as bilinear maps from a client side. Our protocol uses signcryption and provide security in random oracle model.