• Title/Summary/Keyword: Low Noise Amplifier (LNA)

Search Result 259, Processing Time 0.032 seconds

A Study on Design and Implementation of Low Noise Amplifier for Satellite Digital Audio Broadcasting Receiver (위성 DAB 수신을 위한 저잡음 증폭기의 설계 및 구현에 관한 연구)

  • Jeon, Joong-Sung;You, Jae-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.28 no.3
    • /
    • pp.213-219
    • /
    • 2004
  • In this paper, a LNA(Low Noise Amplifier) has been developed, which is operating at L-band i.e., 1452∼1492 MHz for satellite DAB(Digital Audio Brcadcasting) receiver. The LNA is designed to improve input and output reflection coefficient and VSWR(Voltage Standing Wave Ratio) by balanced amplifier. The LNA consists of low noise amplification stage and gain amplification stage, which make a using of GaAs FET ATF-10136 and VNA-25 respectively, and is fabricated by hybrid method. To supply most suitable voltage and current, active bias circuit is designed Active biasing offers the advantage that variations in $V_P$ and $I_{DSS}$ will not necessitate a change in either the source or drain resistor value for a given bias condition. The active bias network automatically sets $V_{gs}$ for the desired drain voltage and drain current. The LNA is fabricated on FR-4 substrate with RF circuit and bias circuit, and integrated in aluminum housing. As a reults, the characteristics of the LNA implemented more than 32 dB in gain. 0.2 dB in gain flatness. lower than 0.95 dB in noise figure, 1.28 and 1.43 each input and output VSWR, and -13 dBm in $P_{1dB}$.

Design and Implementation of Balanced Low Noise Amplifier by Using PBG (PBG(Photonic Bandgap)를 이용한 평형 저잡음 증폭기의 설계 및 구현)

  • 이상만;조성희;서철헌
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.354-357
    • /
    • 2003
  • The low noise and balanced amlifier has been designed by using PBG. Usually balanced LNAis used to matching the input and output mismatching that caused by matching the low noise matching point. And the PBG supresses the harmoincs. This paper proposed balanced LNA by using PBG. And this configuration improve the performance - noise figure, VSWR.

  • PDF

High-temperature superconducting filter and filter subsystem for mobile telecommunication

  • Sakakibara, Nobuyoshi
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.35-39
    • /
    • 2000
  • Large-area high-temperature superconducting (HTS) films, filter design and damage-free processing technique have been developed to fabricate low insertion loss and sharp skirt filters. Further, long life cryocooler, low temperature low noise amplifier (LNA) and cryocable have been developed to assemble HTS filter subsystem for IS-95 and IMT-2000 mobile telecommunication. The surface resistance of the films was about 0.2 milli-ohm at 70 K, 12 GHz. An 11-pole HTS filter for IS-95 telecommunication system and a 16-pole HTS filter for IMT-2000 telecommunication system were designed and fabricated using 60 {\times}$ 50 mm$^2$ and one half of 3-inch diameter YBCO films on a 0.5-mm-thick MgO substrate, respectively. We have assembled the filter and low temperature LNA in a dewar with the cryocooler. Ultra low-noise (noise figure: 0.5 dB at 70 K) and ultra sharp-skirt (40 dB/1.5 MHz) performance was presented by the IS-95 filter subsystem and the IMT-2000 filter subsystem, respectively.

  • PDF

Double-Input Singe-Output Architecture of LNA and Correction Method of Phase Variation for OTM Satellite Communication System (OTM(On-The-Move) 위성 통신 시스템을 위한 저잡음 증폭기 출력채널 단일화 구조 및 위상보정 방안)

  • Kwon, Kun-Sup;Ryu, Heung-Gyoon;Heo, Jong-Wan;Hwang, Ki-Min;Jang, Myung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • In this paper, a double-input single-output architecture of a LNA(Low Noise Amplifier) is presented to enable to be devised for light weight and small-sized OTM(On-The-Move) satellite communication system suitable to be mounted on vehicles. In spite of advantages of the double-input single-output architecture of a LNA such as reduction of the number of physical channels, it results in time-varying phase error between a fundamental mode path and a high-order mode path. This paper shows that the error can be corrected by adding pilot signals to the LNA and using signal processing, and also gives the measurement data to use the method mentioned above.

W-band MMIC Low Noise Amplifier for Millimeter-wave Seeker using Tuner System (Tuner System을 이용한 밀리미터파 탐색기용 W-band MMIC 저잡음 증폭기)

  • An, Dan;Kim, Sung-Chan;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.11
    • /
    • pp.89-94
    • /
    • 2011
  • In this paper, we developed the W-band MMIC low noise amplifier for the millimeter-wave seeker using the tuner system. The MHEMT devices for MMIC LNA exhibited DC characteristics with a drain current density of 692mA/mm, an extrinsic transconductance of 726mS/mm. The current gain cutoff frequency(fT) and maximum oscillation frequency($f_{max}$) were 195GHz and 305GHz, respectively. The fabricated W-band low noise amplifier represented S21 gain of 7.42dB at 94 GHz and noise figure of 2.8dB at 94.2 GHz.

A Design of Monolithic LNB Downconverter Using Self Oscillating Mixer for DBS Application (SOM을 이용한 DBS위성통신용 LNB Downconverter의 설계)

  • 조재현;양홍선;박창열;박정호
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.435-438
    • /
    • 2002
  • A design of Ku-band(11.7~12.20Hz) monolithic microwave integrated circuit(MMIC) low noise block(LNB) downconverter using self oscillating mixer (SOM) for direct broadcast satellite(DBS) application is presented The proposed LNB downconverter is composed of low noise amplifier(LNA), image reject filter(IRF), SOM , low pass filter(LPF). The conversion gain is 30dB , VSn is less than 1.7: 1 and overall noise figure is less than 1.2dB.

  • PDF

3-10.6GHz UWB LNA Design in CMOS 0.18um Process (CMOS 0.18um 공정을 이용한 3.1-10.6 GHz UWB LNA 설계)

  • Jung, Ha-Yong;Hwang, In-Yong;Park, Chan-Hyeong
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.539-540
    • /
    • 2008
  • This paper presents an ultra-wideband (UWB) CMOS low noise amplifier (LNA) topology that operates in 3.1-10.6GHz band. The common gate structure provides wideband input matching and flattens the passband gain. The proposed UWB amplifier is implemented in 0.18 um CMOS technology for lower band operation mode. Simulation shows a minimum NF of 2.35 dB, a power gain of $18.3{\sim}20\;dB$, better than -10 dB of input and output matching, while consuming 16.4 mW.

  • PDF

Variable gain LNA Design for 2.4GHz Wireless LAN (2.4GHz 무선랜용 가변이득 저잡음 증폭기 설계)

  • 강태영;박영호;임지훈;박정호
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.621-624
    • /
    • 2003
  • In this paper, two Cascode Low Noise Variable Gain Amplifiers are proposed for wide dynamic range and constant Noise Figure for frequency range of 2.4GHz. Designed Variable Gain Low Noise Amplifier are for Wireless Local Area Network (WLAN) applications. A gain is higher than 17dB and the noise figure is approximately 1.3dB and the input VSWR is better than 2:1.

  • PDF

AC Modeling of the ggNMOS ESD Protection Device

  • Choi, Jin-Young
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.628-634
    • /
    • 2005
  • From AC analysis results utilizing a 2-dimensional device simulator, we extracted an AC-equivalent circuit of a grounded-gate NMOS (ggNMOS) electrostatic discharge (ESD) protection device. The extracted equivalent circuit is utilized to analyze the effects of the parasitics in a ggNMOS protection device on the characteristics of a low noise amplifier (LNA). We have shown that the effects of the parasitics can appear exaggerated for an impedance matching aspect and that the noise contribution of the parasitic resistances cannot be counted if the ggNMOS protection device is modeled by a single capacitor, as in prior publications. We have confirmed that the major changes in the characteristics of an LNA when connecting an NMOS protection device at the input are reduction of the power gain and degradation of the noise performance. We have also shown that the performance degradation worsens as the substrate resistance is reduced, which could not be detected if a single capacitor model is used.

  • PDF

Wideband VHF and UHF RF Front-End Receiver for DVB-H Application

  • Park, Joon-Hong;Kim, Sun-Youl;Ho, Min-Hye;Baek, Dong-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.81-85
    • /
    • 2012
  • This paper presents a wideband and low-noise direct conversion front-end receiver supporting VHF and UHFbands simultaneously. The receiver iscomposed of a low-noise amplifier (LNA), a down conversion quadrature mixer, and a frequency divider by 2. The cascode configuration with the resistor feedback is exploited in the LNA to achieve a wide operating bandwidth. Four gainstep modesare employed using a switched resistor bank and a capacitor bank in the signal path to cope with wide dynamic input power range. The verticalbipolar junction transistors are used as the switching elements in the mixer to reduce 1/f noise corner frequency. The proposed front-end receiver fabricated in 0.18 ${\mu}m$ CMOS technology shows very low minimum noise figureof 1.8 dB and third order input intercept pointof -12dBm inthe high-gain mode of 26.5 dBmeasured at 500 MHz.The proposed receiverconsumeslow current of 20 mA from a 1.8 V power supply.