• Title/Summary/Keyword: Low NOx emission

Search Result 326, Processing Time 0.025 seconds

Experimental Study on the Flame Behavior and the NOx Emission Characteristics of Low Calorific Value Gas Fuel (저 발열량 가스 연료의 화염거동 및 NOx 발생 특성에 관한 실험적 연구)

  • Kim, Yong-Chul;Lee, Chan
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.89-93
    • /
    • 1999
  • Experimental studies are conducted to investigate the flame stability and the thermal/fuel NOx formation characteristics of the low calorific value(LCV) gas fuel. Synthetic LCV fuel gas is produced through mixing carbon monoxide, hydrogen, nitrogen and ammonia on the basis that the thermal input of the syngas fuel into a burner is identical to that of natural gas, and then the syngas mixture is fed to and burnt with air on flat flame burner. Flame behaviors are observed to identify flame instability due to blow-off or flash-back when burning the LCV fuel gas at various equivalence ratio conditions. Measurements of NOx in combustion gas are made for comparing thermal and fuel NOx emissions from the LCV syngas combustion with those of the natural gas one, and for analyzing ammonia to NOx conversion mechanism. In addition, the nitrogen dilution of the LCV syngas is preliminarily attempted as a NOx reduction technique.

  • PDF

A Study on the Enhancement of Inventories for Precursors (NOx, SOx) Released from Open Burning of Agricultural Waste Vinyl Causing the Secondary Generation of Particulate Matters

  • Kim, Tae-Han;Choi, Boo-Hun
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.2
    • /
    • pp.195-207
    • /
    • 2021
  • Background and objective: While response measures to particulate matters in rural areas are limited due to poor inventory record keeping in the agricultural sector, it is necessary to control agricultural waste vinyl and the emission of precursors released from open burning and the secondary generation of particulate matters. Currently, the open burning emission calculation method uses the definition prescribed in CAPSS by the National Institute of Environmental Research. Methods: This study presented an open burning emission calculation formula for agricultural waste vinyl, which is included as agricultural waste. As for activity data, the open burning ratio of agricultural waste vinyl, and the annual incineration volume provided in the Status Survey by the Ministry of Agriculture, Food, and Rural Affairs were applied. The emission factor was generated through incineration tests on three agricultural plastic film samples collected by the Korea Environment Corporation. Results: Among precursors, SOx and NOx were selected and their emission features were monitored with incineration experiment infrastructure based on the EPA 5G method. The highest emission concentration by agricultural waste type was concentrated in the first and second quarters. As for emission factor of SO2, it was calculated at 98.25 g/kg for mulching-use LDPE, 52.31 g/kg for greenhouse-use LDPE, and 14.40 g/kg for HDPE. As for NOx, it was calculated at 18.21 g/kg for mulching-use LDPE, 16.49 g/kg for greenhouse-use LDPE, and 10.67 g/kg for HDPE. Conclusion: This test confirmed the incineration features of PE-based plastics, ascertained the SOx emission factor that had not been included in open burning in the past, and established that low NOx emission concentration is interfered by soil mixed with livestock excretions. The findings from this study are expected to contribute to improving the system for controlling air pollutants in rural environments.

Analysis of Performance Characteristics on Diesel Engine with Aftertreatment and EGR System (후처리 시스템을 장착한 디젤엔진의 EGR 밸브 작동에 따른 성능 분석)

  • Park, Cheol-Woong;Choi, Young;Lim, Gi-Hun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.124-129
    • /
    • 2010
  • The direct injection (DI) diesel engine has become a prime candidate for future transportation needs because of its high thermal efficiency. However, nitrogen oxides (NOx) increase in the local high temperature regions and particulate matter (PM) increases in the diffusion flame region within diesel combustion. Therefore, the demand for developing hybrid system consist of exhaust gas recirculation (EGR) and aftertreatment system as well as diesel particulate filter (DPF) or lean NOx trap (LNT) should be applied. The variation of EGR rate due to the malfunction of EGR valve can affect not only the combustion stability of engine but also the performance of aftertreatment system. In this research, 2.0 liter 4-cylinder turbocharged diesel engine was used to investigate the combustion and emission characteristics for various operating conditions with EGR. While the fuel consumption was increased with increase of EGR rate, NOx emission was improved by maximum 90% at low speed, low load operating condition. To achieve combustion stability and reliability of aftertrearment system with minimum penalty in fuel consumption and emissions, the fault diagnosis of EGR malfunction must be employed.

NOx Conversion Efficiency of SCR Diesel Vehicle Under Cold Start Condition (냉간 시동 조건에서의 SCR 경유자동차의 NOx 전환 효율)

  • Lee, Dong In;Yu, Young Soo;Park, Junhong;Chon, Mun Soo;Cha, Junepyo
    • Journal of ILASS-Korea
    • /
    • v.23 no.4
    • /
    • pp.244-253
    • /
    • 2018
  • Recently, The ministry of Environment in korea have introduced Euro-6d temp which was strengthened at the same time as Europe. Small Light-duty passenger vehicles need the SCR system of after-treatment to meet enhanced emission regulations. However, SCR system has a low conversion efficiency in a low temperature less than 200 degree. In this study, the NOx conversion efficiency of SCR system was analyzed by installing a NOx sensors and a temperature sensors in a diesel vehicle. Also, in order to analyze the effect of the cold-start, the test was performed on the same RDE route and compared with the test of hot-start. As a result, SCR system has characteristics of low conversion efficiency under cold-start conditions.

Effect of Mixture Flow Rate on Emission Characteristics of Laminar Premixed CH4/Air Flame with Changing Combustor Pressure

  • Ma, Hai-quan;Song, Jae-hyeok;Kang, Ki-joong;Choi, Gyung-min;Kim, Duck-jool
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.269-271
    • /
    • 2012
  • To investigate emission characteristics of laminar premixed CH4/air flame, combustion experiments were conducted at three flow rates (5.3L/min, 10.6L/min, 15.5L/min) with changing the combustor pressure(-30Kpa-30Kpa). It was found that with increasing flow rate, NOx emission increased in high pressure condition, while decreased in low pressure condition; and the emission of CO decreased with increasing flow rate. For the influence of pressure, emission of NOx increased with increasing pressure regardless of flow rates, while CO emission decreased on the contrary.

  • PDF

An Experimental Study on the Characteristics of Combustion and Emission in a Gasoline Direct Injection Type HCCI Engine by Controlling Mixture Formation (가솔린 직접분사식 HCCI 엔진의 혼합기 제어에 의한 연소 및 배기 특성에 관한 실험적 연구)

  • 김형민;류재덕;이기형
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.24-30
    • /
    • 2004
  • As the environmental pollution becomes serious global problem, the regulation of emission exhausted from automobiles is strengthened. Therefore, it is very important to know how to reduce the NOx and PM simultaneously in diesel engines, which has lot of merits such as high thermal efficiency, low fuel consumption and durability. By this reason, the new concept called as Homogeneous Charge Compression Ignition(HCCI) engines are spotlighted because this concept reduced NOx and P.M. simultaneously. However, there is trade off between output and NOx in a HCCI engine. In this study, output and emission characteristics for a gasoline direct injection type HCCI engine were investigated to clarify the effects of intake air temperature, injection time and mixture formation. From these experiments, we found that the smoke was not produced when the fuel was injected earlier than BTDC 90$^{\circ}$. In addition, the output was increased because of delay of ignition time and NOx emission was decreased because of homogeneous charge of first injection in case of split injection.

A Study on the Development of Low NOx Condensing Gas Boiler(I) -Design of Cylindrical Multi-Hole Premixed Burner- (저 NOx 응축형 가스보일러 개발에 관한 연구(I) -원통형 다공 예혼합 연소기 설계-)

  • Lee, Chang-Eon;Geum, Seong-Min;Jeong, Yeong-Sik;Lee, Gyu-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.235-243
    • /
    • 2001
  • This paper describes a design study of the cylindrical multi-hole premixed burner to be used for condensing gas boiler which can raise performance and reduce NOx emission. In this study, specifications of the multi-hole burner (hole diameters and arrangement) are investigated using model flat burners in terms of flame stability, and combustion characteristics for stability and NOx emission are examined for cylindrical multi-hole burner. As a result, the equivalence ratio for optimum operation condition of the cylindrical burner is around 0.72(0.7∼0.75). In this condition, turn-down ratio becomes 3 : 1 at least which is suitable for proportional control. The NOx and CO emission is less than 40ppm and 25ppm(0$_2$0% basis), respectively. This burner can be applied LPG as well as NG because there is no difference for stable combustion region.

Combustion Characteristics of Premixed Combustor using Nickel Based Metal Foam (니켈합금 Metal Foam을 적용한 예혼합 버너의 연소특성)

  • Lee, Pil Hyong;Hwang, Sang Soon;Kim, Jong Kwang
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.2
    • /
    • pp.42-49
    • /
    • 2017
  • A premixed combustion has many advantages including low NOx and CO emission, high thermal efficiency and a small volume of combustor. This study focused on combustion characteristics in a premixed combustion burner using the nickel based metal foam. The results show that the blue flame is found to be very stable at heating load 6,300-25,200 kcal/h by implementing the proper nickel based metal foam and baffle plate. The premixed flame mode is changed into green flame, red flame, blue flame and lift off flame with decreasing equivalence ratio. NOx emission was measured 80 ppm(0% oxygen base) from 0.710 to 0.810 of equivalence ratio and CO emission is 90 ppm(0% oxygen base) under the same equivalence ratio. It is also found that the stable blue flame region in flame stability curve becomes wider with increasing the heat load.

Experimental Study on Combustion Characteristics of Porous Ceramic Liquid Fuel Combustor (다공 세라믹 액체 연료 연소기의 연소 특성에 관한 실험적 연구)

  • Chung, K.H.;Lim, I.G.
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.85-93
    • /
    • 1999
  • Experimental study on a porous ceramic liquid fuel combustor is performed. Compact burner with low pollutant emission and high combustion efficiency is realized through the use of porous ceramic materials of high porosities. The use of porous ceramic materials in burner material results in rapid vaporization of liquid fuel and enhancement in mixing process, and thus nearly premixed combustion of liquid fuel is achieved instead of diffusion and partially premixed combustion method, which is often used and apt to produce high pollutant emissions such as CO, NOx and soot. With this enhanced vaporization and premixing method of liquid fuel vapor and air, it is found that enhanced combustion process with intense radiation output and better emission characteristics in NOx, CO and soot emission, compared to other conventional liquid fuel burning method, are possible.

  • PDF

Flame Structure and NOx Emission Characteristics in Laminar Partially Premixed CH4/Air Flames: Effects of Fuel Split Percentage and Mixing Distance (메탄/공기 층류 부분예혼합화염의 화염구조와 NOx 배출특성 : 연료분배율과 혼합거리의 영향)

  • Jeong, Yong-Ki;Lee, Jong-Ho;Lee, Suk-Young;Jeon, Chung-Hwan;Chan, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.818-825
    • /
    • 2004
  • In this paper, the study of effects of flow parameters on flame structure and NOx emission concentration was performed in co-axial. laminar partially premixed methane/air flames. Such (low parameters as equivalence ratio(${\Phi}$), fuel split percentage($\sigma$), and mixing distance(x/D$\_$i/) were defined as a premixing degree and varied within ${\Phi}$=1.36∼9.52, $\sigma$=50∼100, and x/D$\_$i/=5∼20. The image of OH$\^$*/ and NOx concentration were obtained with an ICCD camera and a NOx analyzer. The flame structure observations show a categorization of partially premixed flames into three distinct flame regimes corresponding to ${\Phi}$<1.7(premixed flame structure), 1.7<${\Phi}$<3.3(hybrid structure), and ${\Phi}$>3.3(diffusion flame structure existing a luminous sooting region) at $\sigma$=75%, and x/D$\_$i/=10. As o decreases from 100% to 50%, and x/D$\_$i/ decreases, nonpremixed flame structure appear at low equivalence ratio relatively. In addition, the measured emissions for NOx rise steeply from ${\Phi}$=1.7, to ${\Phi}$=3.3, then constants ${\Phi}$>4.76. NOx emissions decrease with increase the level of premixing level. In conclusion, the main effect on flame structure and NOx production was at first equivalence ratio(${\Phi}$), and next fuel split percentage($\sigma$), and finally mixing distance(x/D$\_$i/).