• 제목/요약/키워드: Low NOx Combustion

검색결과 342건 처리시간 0.024초

예혼합 희박연소 가스터빈 연소기의 저 NOx 특성 (The Low-NOx Characteristics of Premixed Lean-Burn Gas Turbine Combustor)

  • 배형수;안국영;박종일;안진혁;김용모
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1999년도 제19회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.201-207
    • /
    • 1999
  • The combustion characteristics for the low NOx 50 kW-class gas turbine combustor have been experimentally investigated. In order to achieve the premixing and the lean burn combustion, the geometries of the primary zone including premixed chamber were modified from conventional combustor. The centerline profiles of CO and NO concentration, and temperature were measured for the premixed combustors with or without dilution holes in the liner. The effects of the pilot fuel injection rate and air dilution on flame stabilization and pollutant (CO, NO) emission are discussed in detail.

  • PDF

희박 예혼합 연소를 이용한 마이크로터빈의 저공해 연소기 개발에 관한 연구 (The Study on Development of Low NOx Combustor with Lean Burn Characteristics for Microturbine)

  • 윤정중;이헌석
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.63-72
    • /
    • 2003
  • In order to reduce NOx emissions in the 20kW class microturbine under development, the low NOx characteristics, as being an application to the lean premixed combustion technology, have been investigated. The study has been conducted at the conditions of high temperature and high pressure. Theair from a compressor with the pressure of 2.5bar, 3.0bar, 3.5bar was supplied to the combustor with the temperature 560K through the air preheat-treatment. The sampling exhaust gas was measured at the immediate exit of the combustor. For the effect of temperature on NO and CO emissions, though NOx were increased, CO was decreased with increasing inlet air temperature. With increasing inlet air pressure, NOx were increased and CO was decreased also. NOx were decreased, but CO was increased with increasing inlet air mass flow rate. The test has been performed on the equivalent ratio of 0.10 to 0.16 in the lean region. NOx were increased with increasing equivalent ratio, but CO was decreased as an influence of flame temperature. CFD work with an appropriate combustion model predicated a complicated swirling flow pattern in the combustor, and also produced a numerical value of NOx and CO emissions which was to be compared with the experimental one. As the results of this study, NOx are expected to be reduced to less than 42ppm at 15% O2 when operated at the design condition of the 20kW class microturbine.

  • PDF

후처리 시스템을 장착한 디젤엔진의 EGR 밸브 작동에 따른 성능 분석 (Analysis of Performance Characteristics on Diesel Engine with Aftertreatment and EGR System)

  • 박철웅;최영;임기훈
    • 한국자동차공학회논문집
    • /
    • 제18권5호
    • /
    • pp.124-129
    • /
    • 2010
  • The direct injection (DI) diesel engine has become a prime candidate for future transportation needs because of its high thermal efficiency. However, nitrogen oxides (NOx) increase in the local high temperature regions and particulate matter (PM) increases in the diffusion flame region within diesel combustion. Therefore, the demand for developing hybrid system consist of exhaust gas recirculation (EGR) and aftertreatment system as well as diesel particulate filter (DPF) or lean NOx trap (LNT) should be applied. The variation of EGR rate due to the malfunction of EGR valve can affect not only the combustion stability of engine but also the performance of aftertreatment system. In this research, 2.0 liter 4-cylinder turbocharged diesel engine was used to investigate the combustion and emission characteristics for various operating conditions with EGR. While the fuel consumption was increased with increase of EGR rate, NOx emission was improved by maximum 90% at low speed, low load operating condition. To achieve combustion stability and reliability of aftertrearment system with minimum penalty in fuel consumption and emissions, the fault diagnosis of EGR malfunction must be employed.

재생연료의 MILD연소기술 (MILD Combustion Technology for Recycled Fuel)

  • 심성훈;정상현;이상섭
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.205.2-205.2
    • /
    • 2010
  • Optimum operation conditions of low-NOx MILD combustion for gaseous and solid fuels have been investigated by experimental and computer simulation. Loop reactor type MILD combustor without air pre-heater has been used in the present work. The results show that the balance of injection velocities of fuel and surrounding air is major factor for maintaining MILD combustion mode. Temperature difference between lower and upper part can be reduced less than 20 degree of Celsius. It was found that NOx emission in MILD combustion also can be remarkably reduced to more than 85% in comparison with conventional premixed combustion, and reduced to more than 50% in case of nitrogen and carbon dioxide carrying dried waste water sludge and pulverized coal in comparison with the same of air carrying. It was also found that carbon monoxide emission increase was not appeared at the time of changeover to MILD combustion mode from premixed or air carrying combustion at optimum operation condition.

  • PDF

음파를 이용한 연소 안정성 개선에 관한 연구 (A Study of Improving Combustion Stability with Sonic Wave Radiation)

  • 민선기
    • 한국산학기술학회논문지
    • /
    • 제21권8호
    • /
    • pp.401-406
    • /
    • 2020
  • 자동차에서 배출되는 배기가스 중 질소산화물은 요사이 문제가 되는 미세먼지의 주요 요인 중 하나이다. 질소산화물(NOx)은 고온 조건에서 연소가 진행될 때 발생하므로 연소시 온도를 낮추는 방법으로 발생을 억제하고 있다. 자동차에서는 일반적으로 배기가스 재순환(EGR)을 사용하여 연소 온도를 낮추는 방법으로 감소시킨다. 그러나 EGR 비율이 높아질수록 NOx의 양은 저감되나 연소 안정성의 하락으로 인한 불완전연소 가능성의 증가로 일산화탄소와 미연탄화수소의 양이 증가하여 오히려 오염물질이 증가하는 문제를 발생시킬 수 있다. 여기에서는 연료 입자에 음파를 조사하여 연료 입자의 운동성을 향상시켜 연소가 원활히 진행되게 하여 연소의 안정성을 향상시키는 방안에 대하여 해석적 및 실험적 방법으로 연구하였다. 해석적 방법으로는 유동해석 소프트웨어를 사용하여 연료 입자에 다양한 주파수의 음파를 조사하여 연료 입자의 움직임 변화에 대한 연구를 진행하였다. 해석 결과, 작은 연료 입자의 조건에서는 고주파의 음파에 의해 영향을 많이 받고, 연료 입자가 큰 조건에서는 저주파의 음파에 의해 영향을 많이 받아 운동성이 증가함을 알 수 있었다. 실험적 방법으로는 연소실을 구성하여 정해진 당량비 조건에서 연소시키며 다양한 주파수의 음파를 조사하며 연소실내 압력을 측정하는 연구를 진행하였다. 측정된 압력으로부터 열방출량을 계산하면 연소의 진행 상황에 대한 정보를 얻을 수 있는데, 실험 결과 초기 연소시 상대적 저주파 조사 조건에서 열방출량이 증가한 것을 확인할 수 있었다.

저온디젤연소에서 저세탄가 연료의 방향족 및 T90 온도가 배기가스에 미치는 영향 (Effects of Aromatics and T90 Temperature of Low Cetane Number Fuels on Exhaust Emissions in Low-Temperature Diesel Combustion)

  • 한만배
    • 대한기계학회논문집B
    • /
    • 제34권12호
    • /
    • pp.1121-1126
    • /
    • 2010
  • 1.9L 커먼레일 직접분사 디젤 엔진을 이용하여 1500rpm 2.6bar BMEP 에서 다량의 EGR (약 41%)과 연료분사 제어를 통한 저온디젤연소 영역에서 연료의 특성이 연소와 배기가스에 미치는 영향을 분석하 였다. 사용한 연료는 세탄가 30 에 대하여 방향족 성분 (20%: A20, 45%: A45)과 T90 온도($270^{\circ}C$: T270, $340^{\circ}C$: T340)의 조합으로 네 개이다. 주어진 엔진 운전 영역에서 실험계획법을 이용하여 방향족 성분 및 T90 온도에 따른 연소 및 배기가스에 미치는 영향을 분석하였다. 착화지연 기간은 T90 온도가 지배적인 인자로 T90 온도 증가에 따라 착화지연 기간도 증가하였다. 저세탄가에 의한 착화지연 기간의 증가로 네 가지 연료 모두 PM 배출은 거의 없었다. NOx 배출은 방향족 성분이 지배적인 인자로 방향족 성분증가에 따라 NOx 배출이 증가하였다.

연소실 압력변동을 이용한 저 NOx 연소의 새로운 접근 (New Approach to Low NOx Combustion by Changing Combustor Pressure)

  • 김종률;최경민;김덕줄
    • 대한기계학회논문집B
    • /
    • 제29권10호
    • /
    • pp.1148-1155
    • /
    • 2005
  • In this study, the influence of changing combustor pressure on nitric oxide emission was investigated. Expansion of reaction region was more clear in the P$^{*}$ <1 conditions compared to the P$^{*}\geq1$ conditions, and it could be observed that flames are distinct in the P$^{*}\geq1$ conditions and that brightness is relative low and wide distribution is shown in the P$^{*}$ <1 conditions. In the respect of temperature distribution, narrow and high-temperature region was shown in the P$^{*}\geq1$ conditions. On the other hands, overall uniform temperature distributions were shown in the P$^{*}$ <1 conditions. Nitric oxide emission decreased with decreasing combustor pressure. This tendency was explained by the mean flame temperature distribution. Low NOx combustion is ascribed to wide-spread reaction region in the low combustor Pressure and oscillation were shown P$^{*}\leq0.97$, and strength and sizes of oscillation were more increased with lower pressure index. These results demonstrate that flame shape and nitric oxide emission can be controlled with changing combustor pressure.

Offset-대향 분출혐의 NOx 생성특징 (NOx Production Characteristics of Offset-Opposed Impinging Jet Flame)

  • 서종원;이창진
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1999년도 제19회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.1-9
    • /
    • 1999
  • The NOx production and combustion characteristics are experimentally compared with an offset with counter-orifice configuration. The offset-opposed impinging flame creates stronger vortex around the stagnation point than the opposed flame. The thermal and mass mixtures be improved and the delay of turbulence dissipation be occurred by the strong vortex. In result, the turbulent flame structure transferred from the wrinkled flame and the corrugated flame to the distributed reaction flame. It was found that the offset-opposed impinging flame decreased more NOx and improved the combustion efficiency than the opposed flame. The principal objective of this study is to develop the low NOx combustor by distributed reaction flame.

  • PDF

화염감시 시스템 개발에 관한 연구 (A Study on the Flame Monitoring System Development)

  • 백운보;황이철;이승종
    • 한국정밀공학회지
    • /
    • 제21권2호
    • /
    • pp.60-66
    • /
    • 2004
  • Increased energy costs have placed demands for improved combustion efficiency, high equipment availability, low maintenance and safe operation. Simultaneously low NOx modification, installed due to stricter environmental legislations, require very careful combustion management. The flame diagnostics system has been developed specially to meet these requirements. We aimed at gaining the relationship between burner flame image and emissions such as NOx and unburned carbon in furnace by utilizing the image processing method. For the first step of development, its possibility test was undertaken with bench furnace. The test proceeded to the second step with pilot furnace, the system was observed to be effective for evaluating the combustion conditions.

Combustion Instability Mechanism of a Lean Premixed Gas Turbine Combustor

  • Seo, Seonghyeon
    • Journal of Mechanical Science and Technology
    • /
    • 제17권6호
    • /
    • pp.906-913
    • /
    • 2003
  • Lean premixed combustion has been considered as one of the promising solutions for the reduction of NOx emissions from gas turbines. However, unstable combustion of lean premixed flow becomes a real challenge on the way to design a reliable, highly efficient dry low NOx gas turbine combustor. Contrary to a conventional diffusion type combustion system, characteristics of premixed combustion significantly depend on a premixing degree of combusting flow. Combustion behavior in terms of stability has been studied in a model gas turbine combustor burning natural gas and air. Incompleteness of premixing is identified as significant perturbation source for inducing unstable combustion. Application of a simple convection time lag theory can only predict instability modes but cannot determine whether instability occurs or not. Low frequency perturbations are observed at the onset of instability and believed to initiate the coupling between heat release rate and pressure fluctuations.