• 제목/요약/키워드: Low Molecule Conversion

검색결과 17건 처리시간 0.025초

후코이단에 의한 니코틴의 코티닌 전환 효과 (Conversion Effect to Cotinine from Nicotine by Fucoidan)

  • 이경호;이기형
    • 한국식품영양학회지
    • /
    • 제27권4호
    • /
    • pp.725-731
    • /
    • 2014
  • 본 연구에서는 nicotine 분해에 효과에 대하여 해양식물 유래의 후코이단을 이용하여 시험관에서 직접 혼합법 및 세포주 시험에서 nicotine의 cotinine으로의 전환능을 측정하였다. 직접 혼합법 시험결과, 후코이단 $1{\mu}g/mL$에서 시간이 경과함에 따라서 nicotine의 cotinine으로의 전환 정도가 대조군 대비 증가하여 시험 종료 시점에서 15배의 증가율을 나타내었다. 세포주을 이용한 nicotine의 분해능 시험 결과, 시험 종료 시점에서 대조군 대비 6배의 cotinine 증가율을 나타내었다. 양성 대조군으로 사용한 녹차 추출물 대비 nicotine 분해능은 우수한 것으로 평가되었다. 그러나 후코이단의 항산화능은 녹차 추출물과 대비하여 낮았으며, 항산화 주요 기능을 갖는 폴리페놀 및 플라보노이드 성분 역시 낮았다. 본 시험 결과가 나타내는 바는 후코이단의 nicotine의 cotinine으로의 전환능에 대한 입증을 하였으며 이는 금연 보조 역할을 할 수 있는 기능성 소재로 사료된다.

증숙 처리에 의한 산삼 부정 배양근의 저분자 진세노사이드 추출 (Extraction of Low Molecular Weight Ginsenosides from Adventitious Roots Culture of Wild Mountain Ginseng by Steam Processing)

  • 이예지;김희규;고은지;최재후;조아름;김철중;이재근;임정대;최선강;유창연
    • 한국약용작물학회지
    • /
    • 제26권2호
    • /
    • pp.148-156
    • /
    • 2018
  • Background: Hot steaming is known to be effective in improving the biological activities of plant extracts by breaking down useful compounds to low molecular weight ones. Methods and Results: This study aimed to develop an optimal extraction and steam processing method for enhancing the low molecular ginsenoside contents of the adventitious roots culture of wild mountain ginseng. The total ginsenoside was optimally extracted when 70% EtOH was used at $50^{\circ}C$, whereas low molecule ginsenoside such as Rg2, Rh1, Rh4 and Rk1 could be extracted using 70% EtOH at $70^{\circ}C$. The adventitious roots culture of wild mountain ginseng is known to contain four major ginsenosides, i.e., Rb2, Rb1, Rg1 and Rd, however new ginsenosides Rg6, Rh4, Rg3, Rk1 and Rg5 were new abundantly obtaind after steam processing method was applied. The contents of total ginsenosides were the highest when thermal steam processing was conducted at $120^{\circ}C$ for 120 min. Unlike ginsenosides such as Rg1, Re, Rb1, Rc, Rb2, and Rh1, which decreased after steam processing, Rg3, Rk1, and Rg5 increased after thermal processing. Steam processing significanltly reduced the content of Rb1, increased that of Rg6 by about ten times than that in the adventitious roots culture of wild mountain ginseng. Conclusions: Our study showed that the optimal extraction and steam processing method increased the content of total ginsenosides and allowed the extraction of minor ginsenosides from major ones.

Polarization Converting Waveguide Devices Incorporating UV-curable Reactive Mesogen

  • Chu, Woo-Sung;Kim, Sung-Moon;Kim, Jun-Whee;Kim, Kyung-Jo;Oh, Min-Cheol
    • Journal of the Optical Society of Korea
    • /
    • 제15권3호
    • /
    • pp.289-292
    • /
    • 2011
  • Reactive mesogen (RM) is an organic liquid crystal molecule that can be self-aligned to have an optic axis of birefringence when coated over a polyimide alignment film. A free-standing optical wave-plate film consisting of RM and low-loss optical polymers was fabricated in this work, and the film was inserted across the polymer waveguide to form an integrated optical polarization converter. For convenient evaluation of the polarization converters, a waveguide polarizer and analyzer were fabricated in series. The polarization conversion efficiency was measured to be 25 dB for the wavelength range from 1520 to 1580 nm. The wave plate exhibited a temperature-dependent retardation of $4.5^{\circ}$ for a temperature change from 25 to $100^{\circ}C$.

카바졸과 페노시아진을 이용한 염료감응형 태양전지의 염료 합성과 광적특성 (Synthesis and Photovoltaic Properties of Dendritic Photosensitizers containing Carbazole and Phenothiazine for Dye-sensitized Solar Cells)

  • 김명석;정대영;김재홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.89.1-89.1
    • /
    • 2010
  • Since Gratzel and co-workers developed a new type of solar cell based on the nanocrystalline $TiO_2$ electrode, dye-sensitized solar cells (DSSCs) have attracted considerable attention on account of their high solar energy-to-conversion efficiencies (11%), their easy manufacturing process with low cost production compared to conventional p-n junction solar cells. The mechanism of DSSC is based on the injection of electrons from the photoexcited dye into the conduction band of nanocrystalline $TiO_2$. The oxidized dye is reduced by the hole injection process from either the hole counter or electrolyte. Thus, the electronic structures, such as HOMO, LUMO, and HOMO-LUMO gap, of dye molecule in DSSC are deeply related to the electron transfer by photoexcitation and redox potential. To date, high performance and good stability of DSSC based on Ru-dyes as a photosensitizer had been widely addressed in the literatures. DSSC with Ru-bipyridyl complexes (N3 and N719), and the black ruthenium dye have achieved power conversion efficiencies up to 11.2% and 10.4%, respectively. However, the Ru-dyes are facing the problem of manufacturing costs and environmental issues. In order to obtain even cheaper photosensitizers for DSSC, metal-free organic photosensitizers are strongly desired. Metal-free organic dyes offer superior molar extinction coefficients, low cost, and a diversity of molecular structures, compared to conventional Ru-dyes. Recently, novel photosensitizers such as coumarin, merocyanine, cyanine, indoline, hemicyanine, triphenylamine, dialkylaniline, bis(dimethylfluorenyl)-aminophenyl, phenothiazine, tetrahydroquinoline, and carbazole based dyes have achieved solar-to-electrical power conversion efficiencies up to 5-9%. On the other hand, organic dye molecules have large ${\pi}$-conjugated planner structures which would bring out strong molecular stacking in their solid-state and poor solubility in their media. It was well known that the molecular stacking of organic dyes could reduce the electron transfer pathway in opto-electronic devices, significantly. In this paper, we have studied on synthesis and characterization of dendritic organic dyes with different number of electron acceptor/anchoring moieties in the end of dendrimer. The photovoltaic performances and the incident photon-to-current (IPCE) of these dyes were measured to evaluate the effects of the dendritic strucuture on the open-circuit voltage and the short-circuit current.

  • PDF

multi-chromophore를 가지는 유기염료의 DSSC 광전변환거동 (Photovoltaic Properties of Dendritic Photosensitizers containing multi-chromophore for Dye-sensitized Solar Cells)

  • 김명석;천종훈;정대영;김재홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.117.2-117.2
    • /
    • 2011
  • Since Gratzel and co-workers developed a new type of solar cell based on the nanocrystalline TiO2 electrode, dye-sensitized solar cells (DSSCs) have attracted considerable attention on account of their high solar energy-to-conversion efficiencies (11%), their easy manufacturing process with low cost production compared to conventional p-n junction solar cells. The mechanism of DSSC is based on the injection of electrons from the photoexcited dye into the conduction band of nanocrystalline TiO2. The oxidized dye is reduced by the hole injection process from either the hole counter or electrolyte. Thus, the electronic structures, such as HOMO, LUMO, and HOMO-LUMO gap, of dye molecule in DSSC are deeply related to the electron transfer by photoexcitation and redox potential. To date, high performance and good stability of DSSC based on Ru-dyes as a photosensitizer had been widely addressed in the literatures. DSSC with Ru-bipyridyl complexes (N3 and N719), and the black ruthenium dye have achieved power conversion efficiencies up to 11.2% and 10.4%, respectively. However, the Ru-dyes are facing the problem of manufacturing costs and environmental issues. In order to obtain even cheaper photosensitizers for DSSC, metal-free organic photosensitizers are strongly desired. Metal-free organic dyes offer superior molar extinction coefficients, low cost, and a diversity of molecular structures, compared to conventional Ru-dyes. Recently, novel photosensitizers such as coumarin, merocyanine, cyanine, indoline, hemicyanine, triphenylamine, dialkylaniline, bis(dimethylfluorenyl)-aminophenyl, phenothiazine, tetrahydroquinoline, and carbazole based dyes have achieved solar-to-electrical power conversion efficiencies up to 5-9%. On the other hand, organic dye molecules have large ${\pi}$-conjugated planner structures which would bring out strong molecular stacking in their solid-state and poor solubility in their media. It was well known that the molecular stacking of organic dyes could reduce the electron transfer pathway in opto-electronic devices, significantly. In this paper, we have studied on synthesis and characterization of dendritic organic dyes with different number of electron acceptor/anchoring moieties in the end of dendrimer. The photovoltaic performances and the incident photon-to-current (IPCE) of these dyes were measured to evaluate the effects of the dendritic strucuture on the open-circuit voltage and the short-circuit current.

  • PDF

ZnO 나노구조체를 이용한 염료감응형 태양전지의 광전효율 (Photovoltaic Performence of Dye-sensitized Solar Cells using ZnO nanostructures)

  • 이정관;천종훈;김나리;김재홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.90.1-90.1
    • /
    • 2010
  • Due to the rapidly diminishing energy sources and higher energy production cost, the interest in dye-sensitized solar cells (DSSCs) has been increasing dramatically in recent years. A typical DSSC is constructed of wide band gap semiconductor electrode such as $TiO_2$ or ZnO that are anchored by light-harvesting sensitizer dyes and surrounded by a liquid electrolyte with a iodide ion/triiodide ion redox couple. DSSCs based on one-dimensional nano-structures, such as ZnO nanorods, have been recently attracting increasing attention due to their excellent electrical conductivity, high optical transmittance, diverse and abundant configurations, direct band gap, absence of toxicity, large exiton binding energy, etc. However, solar-to-electrical conversion performances of DSSCs composed of ZnO n-type photo electrode compared with that of $TiO_2$ are not satisfactory. An important reason for the low photovoltaic performance is the dissolution of $Zn^{2+}$ by the adsorption of acidic dye followed by the formation of agglomerates with dye molecules which could block the I-diffusion pathway into the dye molecule on the ZnO surface. In this paper, we prepared the DSSC with the ZnO electrode using the chemical bath deposition (CBD) method under low temperature condition (< $100^{\circ}C$). It was demonstrated that the ZnO seed layers played an important role on the formation of the ZnO nanostructures using CBD. To achieve truly low-temperature growth of the ZnO nanostructures on the substrates, a two-step method was developed and optimized in the present work. Firstly, ZnO seed layer was prepared on the FTO substrate through the spin-coating method. Secondly, the deposited ZnO seed substrate was immersed into an aqueous solution of 0.25M zinc nitrate hexahydrate and 0.25M hexamethylenetetramine at $90^{\circ}C$ for hydrothermal reaction several times.

  • PDF

Expression of genes related to lipid transport in meat-type ducks divergent for low or high residual feed intake

  • Jin, Sihua;Xu, Yuan;Zang, He;Yang, Lei;Lin, Zhiqiang;Li, Yongsheng;Geng, Zhaoyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권3호
    • /
    • pp.416-423
    • /
    • 2020
  • Objective: This study examined the effects of divergence in residual feed intake (RFI) on expression profiles of key genes related to lipid transport in the liver and duodenal epithelium and their associations with feed efficiency traits in meat-type ducks. Methods: A total of 1,000 male ducks with similar body weight (1,042.1±87.2 g) were used in this study, and their individual RFI was calculated from 21 to 42 d of age. Finally, the 10 highest RFI (HRFI) and 10 lowest RFI (LRFI) ducks were chosen for examining the expression of key genes related to lipid transport in the liver and duodenal epithelium using quantitative polymerase chain reaction. Results: In the liver, expression levels of albumin (ALB), CD36 molecule (CD36), fatty acid hydroxylase domain containing 2 (FAXDC2), and choline kinase alpha (CHKA) were significantly higher in LRFI ducks than in HRFI ducks (p<0.01); negative correlations (p<0.05) between expression levels of ALB, CD36, FAXDC2, and CHKA and RFI were detected in the liver. Additionally, ALB expression was strongly positively correlated (p<0.05) with CD36, FAXDC2, CHKA, and apolipoprotein H (APOH) expression in the liver. In duodenal epithelium, we found that mRNA levels of ALB, CD36, FAXDC2, and APOH were significantly higher in LRFI ducks than in HRFI ducks (p<0.01); RFI was strongly negatively correlated (p<0.05) with ALB, FAXDC2, and APOH expression, while ALB expression was strongly positively correlated with APOH expression (p<0.01) in duodenal epithelium. Furthermore, expression levels of both ALB and FAXDC2 genes were significantly associated with feed conversion ratio and RFI in both liver and duodenal epithelium (p<0.05). Conclusion: Our findings therefore suggest that ALB and FAXDC2 genes might be used as potential gene markers designed to improve feed efficiency in future meat-type duck breeding programs.