• 제목/요약/키워드: Low Mach Number Aeroacoustics

검색결과 5건 처리시간 0.02초

저마하수 난류 끝단 소음 예측 (PREDICTION OF TURBULENCE TRAILING-EDGE NOISE AT LOW MACH NUMBERS)

  • 장강욱;고성룡;서정희;문영준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.249-253
    • /
    • 2005
  • The turbulence noise generated from blunt trailing-edge is numerically predicted by using the hydrodynamic/acoustic splitting method at the Reynolds number based on thickness of flat plate, $Re_h=1000$, and the freestream Mach number $M_o=0.2$. The turbulent flow field is simulated by incompressible large-eddy simulation and the acoustic field is predicted efficiently with the linearized perturbed compressible equations (LPCE) recently proposed by the authors. The turbulent flow characteristics are validated with the results of the previous experimental study and direct numerical simulation. The acoustic properties predicted from LPCE are compared with the solutions of analytical formulations.

  • PDF

하이브리드기법을 이용한 저마하수 난류소음의 효율적 전산해석 (Efficient Computation of Turbulent Flow Noise at Low Mach Numbers Via Hybrid Method)

  • 서정희;문영준
    • 대한기계학회논문집B
    • /
    • 제31권9호
    • /
    • pp.814-821
    • /
    • 2007
  • A hybrid method is presented for efficient computation of turbulent flow noise at low Mach numbers. In this method, the turbulent flow field is computed by incompressible large eddy simulation (LES), while the acoustic field is computed with the linearized perturbed compressible equations (LPCE) derived in this study. Since LPCE is computed on the rather coarse acoustic grid with the flow variables and source term obtained by the incompressible LES, the computational efficiency of calculation is greatly enhanced. Furthermore, LPCE suppress the instability of perturbed vortical mode and therefore secure consistent and stable acoustic solutions. The proposed LES/LPCE hybrid method is applied to three low Mach number turbulent flow noise problems: i) circular cylinder, ii) isolated flat plate, and iii) interaction between cylinder wake and airfoil. The computed results are closely compared with the experimental measurements.

플래핑 날개의 음향 특성에 대한 수치 연구 (Numerical Investigation on the Flapping Wing Sound)

  • 배영민;문영준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3209-3214
    • /
    • 2007
  • This study numerically investigates the unsteady flow and acoustic characteristics of a flapping wing using a hydrodynamic/acoustic splitting method. The Reynolds number based on the maximum translation velocity of the wing is Re=8800 and Mach number is M=0.0485. The flow around the flapping wing is predicted by solving the two-dimensional incompressible Navier-Stokes equations (INS) and the acoustic field is calculated by the linearized perturbed compressible equations (LPCE), both solved in moving coordinates. Numerical results show that the hovering sound is largely generated by wing translation (transverse and tangential), which have different dipole sources with different mechanisms. As a distinctive feature of the flapping sound, it is also shown that the dominant frequency varies around the wing.

  • PDF

Computation of Aeolian Tones from Twin-Cylinders Using Immersed Surface Dipole Sources

  • Cheong, Cheol-Ung;Ryu, Je-Wook;Lee, Soo-Gab
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2292-2314
    • /
    • 2006
  • Efficient numerical method is developed for the prediction of aerodynamic noise generation and propagation in low Mach number flows such as aeolian tone noise. The proposed numerical method is based on acoustic/viscous splitting techniques of which acoustic solvers use simplified linearised Euler equations, full linearised Euler equations and nonlinear perturbation equations as acoustic governing equations. All of acoustic equations are forced with immersed surface dipole model which is developed for the efficient computation of aerodynamic noise generation and propagation in low Mach number flows in which dipole source, originating from unsteady pressure fluctuation on a solid surface, is known to be more efficient than quadrupole sources. Multi-scale overset grid technique is also utilized to resolve the complex geometries. Initially, aeolian tone from single cylinder is considered to examine the effects that the immersed surface dipole models combined with the different acoustic governing equations have on the overall accuracy of the method. Then, the current numerical method is applied to the simulation of the aeolian tones from twin cylinders aligned perpendicularly to the mean flow and separated 3 diameters between their centers. In this configuration, symmetric vortices are shed from twin cylinders, which leads to the anti-phase of the lift dipoles and the in-phase of the drag dipoles. Due to these phase differences, the directivity of the fluctuating pressure from the lift dipoles shows the comparable magnitude with that from the drag dipoles at 10 diameters apart from the origin. However, the directivity at 100 diameters shows that the lift-dipole originated noise has larger magnitude than, but still comparable to, that of the drag-dipole one. Comparison of the numerical results with and without mean flow effects on the acoustic wave emphasizes the effects of the sheared background flows around the cylinders on the propagating acoustic waves, which is not generally considered by the classic acoustic analogy methods. Through the comparison of the results using the immersed surface dipole models with those using point sources, it is demonstrated that the current methods can allow for the complex interactions between the acoustic wave and the solid wall and the effects of the mean flow on the acoustic waves.