• Title/Summary/Keyword: Low Flow Rate

Search Result 1,938, Processing Time 0.026 seconds

Investigation of Performance Characteristics in a Welded Plate Heat Exchanger according to Mass flow rate and Temperature (용접식 판형열교환기에서 작동유체의 유량과 온도변화에 따른 성능특성 고찰)

  • Ham, Jeonggyun;Kim, Min-Jun;An, Sungkook;Cho, Honghyun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.4
    • /
    • pp.20-26
    • /
    • 2018
  • In this study, the performance characteristics of a welded plate heat exchanger was investigated experimentally. Performance tests were carried out according to the flow rate and inlet temperature of working fluid. As a result, the heat transfer capacity increased by 335.5 kW with an increasing the flow rate and temperature difference between hot and cold side. However, the overall heat transfer coefficient was increased with the increase of flow rate, and it was not effected significantly from inlet temperature difference between hot and cold working fluid. The pressure drop was increased by 55.78 kPa with an increasing the frow rate when the flow rate ratio between hot and cold side 1:1. However, the tendency of pressure drop was difference when flow rate ratio wasn't 1:1. In case that the flow rate ratio between hot and cold side was not 1:1, the pressure drop at the low flow rate side was higher than that when the flow rate ratio was 1:1, while pressure drop of the other side was decreased compared to that when the flow rate ratio was 1:1.

ANALYSES ON FLOW FIELDS AND PERFORMANCE OF A CROSS-FLOW FAN WITH VARIOUS SETTING ANGLES OF A STABILIZER

  • Kim D. W.;Kim H. S.;Park S. K.;Kim Youn J
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.107-112
    • /
    • 2005
  • A cross-flow fan is generally used on the region within the low static pressure difference and the high flow rate. It relatively makes high dynamic pressure at low rotating speed because a working fluid passes through an impeller blade twice and blades have a forward curved shape. At off-design points, there are a rapid pressure head reduction, a noise increase and an unsteady flow. Those phenomena are remarkably influenced by the setting angle of a stabilizer. Therefore, it should be considered how the setting angle of a stabilizer affects on the performance and the flow fields of a cross-flow fan. It is also required to investigate the effect of the volumetric flow rate before occurring stall. Two-dimensional, unsteady governing equations are solved using a commercial code, STAR-CD, which uses FVM. PISO algorithm, sliding grid system and standard k - ε turbulence model are also adopted. Pressure and velocity profiles with various setting angles are graphically depicted. Furthermore, the meridional velocity profiles around the impeller are plotted with different flow rates for a given rotating speed.

Electrochemical Damage Characteristics of Anodized 5083 Aluminum Alloy with Flow Rate in Seawater (양극산화 처리된 5083 알루미늄 합금의 해수 내 유속변화에 따른 전기화학적 손상 특성)

  • Park, Il-Cho;Kim, Seong-Jong
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.4
    • /
    • pp.349-356
    • /
    • 2016
  • In this study, electrochemical damage behaviors with flow rate were investigated for anodized 5083 aluminum alloy in seawater. As the results of anodic polarization experiments and potentiostatic experiments at +1.0 V (vs. SSCE), the non-flow condition presented largely damaged surface resulting from a tendency of local pitting damage. Under various flow rate conditions, however, less surface damages under the application of anodic potential was obtained which is attributed to no accumulation of $H^+$ and $Cl^-$ ions on the surface. On the other hand, the results of the potentiostatic experiments at -1.0 V (vs. SSCE) with flow rate showed that anodized 5083 aluminum alloys could achieve the effective cathodic protection by low cathodic protection current density less than $2.61{\times}10^{-7}A/cm^2$ even under high flow rate of 1 m/s.

Electrical Performance Characteristics of 200W PEM-Type Fuel Cells with Variations on Mass Flow Rate and Stack Temperature (공급유량 및 스택온도의 변이에 따른 200W급 PEM형 연료전지의 전기적 성능특성)

  • Hong, Kyung-Jin;Park, Se-Joon;Choi, Yong-Sung;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.563-567
    • /
    • 2009
  • The polymer electrolyte membrane fuel cell(PEMFC) with the advantages of low-operating temperature, high current density, low cost and volume, fast start-up ability, and suitability for discontinuous operation becomes the most reasonable and attractive power system for transportation vehicle and micro-grid power plant in a household. 200W PEM-type FCs system was integrated by this study, then the electrical characteristics and diagnosis of the fuel cell were analyzed with variations on mass flow rate and stack temperature. The ranges of the variations are 1~8L/min on $H_2$ volume and $20{\sim}70^{\circ}C$ on stack temperature.

When the Botulinium Toxin Injection Is Effective in Stutters (말더듬에서 언제 보툴리늄독소주입술이 효과적인가에 관한 연구)

  • Ahn, Cheol Min
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.26 no.1
    • /
    • pp.46-50
    • /
    • 2015
  • Background and Objectives:Laryngeal hyperkinetic movements of stuttering patients is similar to that of adductor spasmodic dysphonia. There has been studies on implementing botulinium toxin injections to treat stuttering. However, the opinions on the bouolinium toxin injection's effects on stuttering patients vary. In this study authors aim to figure out when the botulinium toxin injection improves stuttering patients. Materials and Methods:Stuttering patients who could receive botulinium toxin injection participated in this study. Age differences, gender differences, electroglottogrphic test, aerodynamic test in botulinium toxin injection treatment of stuttering were analyzed. Results:The botulinium toxin injection had statistically significant impact on patients who showed low mean air flow rate during aerodynamic study. Conclusion:The botulinium toxin injection could reduce stuttering of patients with low mean air flow rate in aerodynamic study.

  • PDF

Experimental Study on Extinction Behavior in Buoyancy-minimized Counterflow Diffusion Flame (부력 효과의 최소화를 통한 대향류 확산화염 소화거동에 관한 실험적 연구)

  • Chung, Yong Ho;Park, Jeong;Kwon, Oh Boong;Yun, Jin-Han;Kee, Sang-In;Kim, Young Ju
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.4
    • /
    • pp.38-43
    • /
    • 2012
  • Experimental study was conducted to elucidate flame extinction phenomena in counterflow flame. Using a curtain helium flow significantly reduced buoyancy such that the flame can be positioned at the center between the upper and lower nozzles even at the velocity ratio of 1.0. The curves of critical diluent mole fraction versus global strain rate have C-shapes. The flame oscillation was observed prior to low strain rate flame extinction at both flame conditions with and without minimizing buoyancy force. The results show that, at low strain rate flame, the self-excitation frequency with the order of 1.0 Hz in the case of utilizing pure helium gradually decreases in increase of $N_2$ mole fraction in the curtain flow, meaning that buoyancy suppresses the self-excitation of the outer edge flame.

A Study on the Flow Characteristics of Fluidic Valve (Fluidic Valve의 유동 특성에 관한 연구)

  • Yoo, Seong-Yeon;Jie, Myoung-Seok;Kim, Ki-Hyung;Kim, Man-Woong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.425-432
    • /
    • 2001
  • Fluidic valve is adopted in APR1400 to control passively the flow rate of cooling water from the safety injection tank. It is necessary to establish independent evaluation guideline for the flow characteristics of fluidic valve in order to secure safety. Three dimensional numerical model for fluidic valve is developed and numerical results are compared with experimental data obtained at KAERI in order to verify numerical simulation. Also influence of the grid number and the turbulence model were investigated. In addition, variation of flow rate is investigated at various elapsed times after valve operating, and flow characteristics are analyzed at low and high flow rate conditions, respectively.

  • PDF

Unsteadiness of Tip Leakage Flow in an Axial Compressor (축류 압축기 팁 누설 유동의 비정상 특성에 관한 연구)

  • Hwang, Yoo-Jun;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.1
    • /
    • pp.58-63
    • /
    • 2012
  • Three dimensional unsteady numerical calculations were performed to investigate unsteadiness of the tip leakage flow in an axial compressor. The first stage of the four-stage low-speed research axial compressor was examined. Since this compressor has a relatively large tip clearance, the unsteadiness of the tip leakage flow is induced. Through the results from the unsteady calculations, the process of the induced unsteady tip leakage flow was investigated. It was shown that the leakage flow that occurred at a rotor blade tip clearance affected the pressure distribution on the pressure side near the tip of the adjacent blade, thus caused the fluctuation of the pressure difference between the pressure side and suction side. Consequently, the unsteady tip leakage flow was induced at the adjacent rotor blade. The unsteady feature of the tip leakage flow was changed as the operating point was moved. The interface between the tip leakage flow and the main flow only affected the trailing edge region at the design point whereas the interface influenced up to the leading edge at the low flow rate point. As the flow rate decreased, additionally, it was seen that the vortex size of the tip leakage flow increased and the relatively large length scale disturbance occurred. On the other hand, using frequency analysis, it was shown that the unsteadiness was not associated with the rotor speed and was about 40% of the blade passing frequency. This feature was explained in the rotor relative frame of reference, and the frequency decreased as the flow rate decreased.

Growth Responses of the Filter-Feeding Clam Gafrarium tumidum to Water Flow: A Field Manipulation Experiment

  • Cheung, S.G.;Shin, Paul K.S.
    • Journal of Ecology and Environment
    • /
    • v.30 no.2
    • /
    • pp.109-119
    • /
    • 2007
  • The effect of water flow on the growth of Gafrarium tumidum was studied in the field using open cages constructed with stainless steel net and perspex in which holes were drilled. Cages with different flows (25, 50 and 75% of the control) were made by varying the area of perspex being drilled. Reduction in flow rate was directly proportional to the undrilled area, and the mean flow rate of the different treatment groups varied from 3.12 cm/s for the 25% exposure to 12.48 cm/s for the control cages. At the end of the 3-month experiment, no significant differences in sediment characteristics were found among the treatments. Growth in shell length, shell weight and tissue dry weight was, however, positively correlated with flow rate. Percentage increases ranged from $3.0{\sim}8.3%$ for shell length, $9.9{\sim}23.1%$ for shell weight and $17.2{\sim}53.3%$ for tissue dry weight. Condition index of the clam was not significantly different among the treatments. Seston depletion effect could reduce growth in G. tumidum only when water flow was reduced to 25% of the control. G. tumidum also exhibited different responses in shell and tissue growth at low flow rates, in which shell growth continued to decrease as flow rate decreased whereas tissue growth was relatively independent of low flows at 25 and 50% of the control. It was suggested that when seston flux was reduced at slow flows, it would be a better strategy for G. tumidum to channel energy for gonad development instead of shell growth during the reproductive stage.

A Study on the Characteristics of Two-Step-Flow-Control Fluidic Device (2단 유량제어 Fluidic Device의 특성에 관한 연구)

  • Cho, Bong-Hyun;Bae, Yoon-Yeong;Park, Jong-Kyun;Yoo, Seong-Yeon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.3 s.12
    • /
    • pp.53-61
    • /
    • 2001
  • Vortex type Fluidic Device(FD) which is installed at the bottom of Safety Injection Tank(SIT) controls the discharge flow rate from the tank. In case of loss of coolant accident the injection water flows into primary system in two steps; initial high flow rate for certain period of time and subsequent low flow rate. By two-step control of the discharge flow rate, FD can ensure the effective use of water in the tank. A small-scale FD has been tested to obtain a required flow characteristics maintaining full pressure and height of prototype, which are the major contributing parameters. Through the testing of many different arrangements of internal geometry of FD, most appropriate one was selected and its performance data was obtained. As characteristics of FD, time dependent Euler number, flow rate and pressure are presented and discussed. Also a method to predict the full size FD is presented.

  • PDF