• Title/Summary/Keyword: Low Density Range

Search Result 662, Processing Time 0.034 seconds

Analysis of Electrical Property on Inductively Coupled Ar Plasma for Gas Pressure (유도결합형 Ar 플라즈마의 압력에 따른 전기적 특성분석)

  • 조주웅;이영환;김광수;허인성;최용성;박대희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.3
    • /
    • pp.133-136
    • /
    • 2004
  • Low-Pressure inductively coupled RF discharge sources have important industrial applications mainly because they can provide a high-density electrodeless plasma source with low ion energy and low power loss. In an inductive discharge, the RF power is coupled to the plasma by an electromagnetic interaction with the current flowing in a coil. In this paper, the experiments have been focussed on the electric characteristic and carried out using a single Langmuir probe. The internal electric characteristics of inductively coupled Ar RF discharge at 13.56(MHz) have been measured over a wide range of power at gas pressure ranging from 1∼70(mTorr).

Ar Gas properties of Inductively Coupled Plasma for Input Power (유도결합형 플라즈마에서 압력에 따른 Ar Gas의 특성분석)

  • Jo, Ju-Ung;Lee, Y.H.;Her, In-Sung;Kim, Kwang-Soo;Choi, Yong-Sung;Lee, Jong-Chan;Park, Dea-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1704-1706
    • /
    • 2003
  • Low-Pressure inductively coupled RF discharge sources have important industrial applications mainly because they can provide a high-density electrodeless plasma source with low ion energy and low power loss. In an inductive discharge, the RF power is coupled to the plasma by an electromagnetic interaction with the current flowing in a coil. In this paper, the experiments have been focussed on the electric characteristic and carried out using a single Langmuir probe. The internal electric characteristics of inductively coupled Ar RF discharge at 13.56 [MHz] have been measured over a wide range of power at gas pressure ranging from $1{\sim}70$ [mTorr].

  • PDF

Effect of Current Density on Ion Conductivity of Membrane in Proton Exchange Membrane (고분자전해질 연료전지에서 고분자막의 이온전도도에 미치는 전류밀도의 영향)

  • Hwang, Byungchan;Oh, Sohyung;Lee, Daewoong;Chung, Hoi-Bum;You, Seung-Eul;Ku, Young-Mo;Na, Il-Chae;Lee, Jung-Hoon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • In this work, we study the ion conductivity by analyzing the impedance to the high current density range that the PEMFC (Proton Exchange Membrane Fuel Cell) is actually operated. The effect of GDL (Gas Diffusion Layer)presence on impedance was investigated indirectly by measuring hydrogen permeability. When the RH (Relative Humidity)was higher than 60% in the low current range (< $80mA/cm^2$), the moisture content of the polymer membrane was sufficient and the ion conductivity of the membrane was not influenced by the current change. However, when RH was low, ion conductivity increased due to water production as current density increased. The ion conductivity of the membrane obtained by HFR (High Frequency Resistance) in the high current region ($100{\sim}800mA/cm^2$)was compared with the measured value and simulated value. At RH 100%, both experimental and simulated values showed constant ion conductivity without being influenced by current change. At 30~70% of RH, the ionic conductivity increased with increasing current density and tended to be constant.

Water-Fat Imaging with Automatic Field Inhomogeneity Correction Using Joint Phase Magnitude Density Function at Low Field MRI (저자장 자기공명영상에서 위상-크기 결합 밀도 함수를 이용한 자동 불균일 자장 보정 물-지방 영상 기법)

  • Kim, Pan-Ki;Ahn, Chang-Beom
    • Investigative Magnetic Resonance Imaging
    • /
    • v.15 no.1
    • /
    • pp.57-66
    • /
    • 2011
  • Purpose : A new inhomogeneity correction method based on two-point Dixon sequence is proposed to obtain water and fat images at 0.35T, low field magnetic resonance imaging (MRI) system. Materials and Methods : Joint phase-magnitude density function (JPMF) is obtained from the in-phase and out-of-phase images by the two-point Dixon method. The range of the water signal is adjusted from the JPMF, and 3D inhomogeneity map is obtained from the phase of corresponding water volume. The 3D inhomogeneity map is used to correct the inhomogeneity field iteratively. Results : The proposed water-fat imaging method was successfully applied to various organs. The proposed 3D inhomogeneity correction algorithm provides good performances in overall multi-slice images. Conclusion : The proposed water-fat separation method using JPMF is robust to field inhomogeneity. Three dimensional inhomogeneity map and the iterative inhomogeneity correction algorithm improve water and fat imaging substantially.

Nitrogen Dynamics and Growing of Shrimp (Fenneropenaeus chinensis) in the High Density Aquaculture Ponds (고밀도 축제식 양식장의 질소역학과 대하 (Fenneropenaeus chinensis) 성장)

  • KANG Yun Ho;YOON Yang Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.1
    • /
    • pp.24-32
    • /
    • 2004
  • A mathematical model is used to investigate nitrogen dynamics in the intensive aquaculture ponds in the western coast of Korea. Parameters associated with water quality, sediments and growing of shrimp (Fenneropenaeus chinensis) are measured to calibrate the model for feeding ponds A and B and storage ponds. The model describes the fate of nitrogen including loadings of ammonia from feeds, phytoplankton assimilation, nitrification, sedimentation, volatilization and discharge. The model obtains good agreements with the measured values of TAN $(NH_4,\;NH_3),\;NO(NO_2,\;NO_3)$ and Chl (chlorophyll a). Impacts of water exchange on TAN and Chl are investigated, showing that the range of 0.01-0.2 (/day) cannot effectively reduce TAN but reduces Chl. Nitrogen in the ponds A is removed by sedimentation $66\%,$ volatilization $8\%,$ discharge of particulate and dissolved $8\%.$ The pond B shows $56\%\;and\;26\%$ of sedimentation and volatilization, respectively, to yield $10\%.$ decrease and 8c/o increase compared to those in the pond A. While the pond A has larger area (1.02:0.66 ha) and same stocking density (0.025 md./L) at the beginning of culture, the pond B obtains higher stocking density (0.0065:0.0091 md./L), longer feeding period (103:121 day) and resultant higher shrimp production (1.15:2.13 t/ha/cycle) at harvest. This is possibly due to the hydraulic characteristics driven by paddlewheels. At low ratio of the low speed area and the pond area, the rate of sedimentation is high, while the rate of gas exchange is low. Thus, the measurement and model analysis suggest that water quality and shrimp production are positively correlated with the hydraulic characteristics in the shrimp ponds.

Fabrication of Vertically Aligned GaN Nanostructures and Their Field Emission Property

  • Jo, Jong-Hoe;Kim, Je-Hyeong;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.281-281
    • /
    • 2014
  • The field emission properties of GaN are reported in the present study. To be a good field emitter, it requires a low work function, high aspect ratio, and strong mechanical stability. In the case of GaN, it has a quite low work function (4.1eV) and strong chemical/mechanical/thermal stabilities. However, so far, it was difficult to fabricate vertical GaN nanostructures with a high aspect ratio. In this study, we successfully achieved vertically well aligned GaN nanostructures with chemical vapor-phase etching methods [1] (Fig. 1). In this method, we chemically etched the GaN film using hydrogen chloride and ammonia gases at high temperature around $900^{\circ}C$. This process effectively forms vertical nanostructures without patterning procedure. This favorable shape of GaN nanostructures for electron emitting results in excellent field emission properties such as a low turn-on field and long term stability. In addition, we observed a uniform fluorescence image from a phosphor film attached at the anode part. The turn-on field for the GaN nanostructures is found to be about $0.8V/{\mu}m$ at current density of $20{\mu}A$/cm^2. This value is even lower than that of typical carbon nanotubes ($1V/{\mu}m$). Moreover, threshold field is $1.8V/{\mu}m$ at current density of $1mA$/cm^2. The GaN nanostructures achieved a high current density within a small applied field range. We believe that our chemically etched vertical nanostructures are the promising structures for various field emitting devices.

  • PDF

Spot Cooling System Development for Ever-bearing Strawberry by Using Low Density Polyethylene Pipe (연질 PE관을 이용한 여름딸기 부분냉방기술 개발)

  • Moon, Jong Pil;Kang, Geum Choon;Kwon, Jin Kyung;Lee, Su Jang;Lee, Jong Nam
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.149-158
    • /
    • 2014
  • The effects of spot cooling on growing ever-bearing strawberry in hydroponic cultivation during summer by spot cooling system was estimated in plastic greenhouse located in Pyeongchang. The temperature of cooling water was controlled by heat pump and maintained at the range of $15{\sim}20^{\circ}C$. Cooling pipes were installed in root zone and very close to crown. Spot cooling effect was estimated by applying system in three cases which were cooling root zone, crown plus root zone, and crown only. White low density polyethylene pipe in nominal diameter of 16 mm was installed on crown spot, and Stainless steel flexible pipe in nominal diameter of 15A was installed in root zone. Crown and root zone cooling water circulation was continuously performed at flowrates of 300 ~ 600 L/hr all day long. Strawberry yields by test beds were surveyed from Aug. 1 to Sep. 30. The accumulated yield growth rate compared with a control bed of crown cooling bed was 25 % and that of crown plus root zone cooling bed was 25 % and that of root zone cooling bed was 20 %. The temperatures of root spot in root zone cooling was maintained at $18{\sim}23.0^{\circ}C$ and that of crown spot in crown cooling was maintained at $19{\sim}24^{\circ}C$. Also, the temperatures of root spot in crown plus root zone cooling bed was maintained at $17.0{\sim}22.0^{\circ}C$ and that of crown spot was maintained at $19{\sim}25^{\circ}C$.

New composites based on low-density polyethylene and rice husk: Elemental and thermal characteristics

  • Anshar, Muhammad;Tahir, Dahlang;Makhrani, Makhrani;Ani, Farid Nasir;Kader, Ab Saman
    • Environmental Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.250-257
    • /
    • 2018
  • We developed new composites by combining the solid waste from Low-Density Polyethylene in the form of plastic bag (PB) and biomass from rice husk (RH),in the form of $(RH)_x(PB)_{1-x}$ (x = (1, 0.9, 0.7, 0.5)), as alternative fuels for electrical energy sources, and for providing the best solution to reduce environmental pollution. Elemental compositions were obtained by using proximate analysis, ultimate analysis, and X-ray fluorescence spectroscopy, and the thermal characteristics were obtained from thermogravimetric analysis. The compositions of carbon and hydrogen from the ultimate analysis show significant increases of 20-30% with increasing PB in the composite. The activation energy for RH is 101.22 kJ/mol; for x = 0.9 and 0.7, this increases by 4 and 6 magnitude, respectively, and for x = 0.5, shows remarkable increase to 165.30 kJ/mol. The range of temperature of about $480-660^{\circ}C$ is required for combustion of the composites $(RH)_x(PB)_{1-x}$ (x = (1, 0.9, 0.7, 0.5)) to perform the complete combustion process and produce high energy. In addition, the calorific value was determined by using bomb calorimetry, and shows value for RH of 13.44 MJ/kg, which increases about 30-40% with increasing PB content, indicating that PB has a strong effect of increasing the energy realized to generate electricity.

A STUDY ON THE CORROSION OF AMALGAMS IN CHLORIDE SOLUTION (Chloride용액에서의 아말감부식에 대한 연구)

  • Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.502-514
    • /
    • 1998
  • The purpose of this study is to observe the corrosion characteristcs of four dental amalgams(CAULK FINE CUT, CAULK SPHERICAL, DISPERSALLOY, TYTIN) and to determine a function of chloride concentration through the anodic polarization curve obtained by using a potentiostat. After each amalgam alloy and Hg being triturated, the triturated mass was inserted into the cylinderical metal mold, and condensed by hydrolic pressure. Each specimen was removed from the metal mold. 24 hours after condensation, specimens were polished with the emery paper and stored at room temperature for 6 months. The anodic polarization curves were employed to compare the corrosion behaviours of the amalgam m KCl and KCl-NaCl solution, which had chlonde concentration of 0.4 g/l, 0.8 g/l, 1.2 gil, and 1.6 gil at $37^{\circ}C$ with 3-electrode potentiostat. After the immersion of specimen in electrolyte for 1 hour, the potential scan was begun. The potential scan range was - 1500mV ~+800mV(vs. S.C.E.) in the working electrode and the scan rate was 50mV/sec. The results were as follows, 1. The corrosion potential. the potential of anodic current peak, and transpassive potential in the solution of high chloride concentration shifted to more cathodic direction than those in the solution of low concentration, and the current density in the solution of high chloride concentration was higher than that in the solution of low concentration. 2. The corrosion potential, the potential of anodic current peak, and transpassive potential for CAULK FINE CUT amalgam were the most cathodic among the others, and the current density were the highest among the others. 3. In the solution of low chloride concentration, the corrosion potential, the potential of anodic current peak, and transpassive potential for DISPERSALLOY were the most anodic among the others, however in the solution of high chloride concentration, those for TYTIN were the most anodic among the others. 4. The anodic polarization curve for CAULK SPHERICAL was similar to that for high copper amalgams.

  • PDF

A Convenient System for Film Dosimetry Using NIH-image Software

  • Kurooka, Masahiko;Koyama, Syuji;Obata, Yasunori;Homma, Mitsuhiko;Imai, Kuniharu;Tabushi, Katsuyoshi
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.260-262
    • /
    • 2002
  • An accurate measurement of dose distribution is indispensable to perform radiation therapy planning. A measurement technique using a radiographic film, which is called a film dosimetry, is widely used because it is easy to obtain a dose distribution with a good special resolution. In this study, we tried to develop an analyzing system for the film dosimetry using usual office automation equipments such as a personal computer and an image scanner. A film was sandwiched between two solid water phantom blocks (30 ${\times}$ 30 ${\times}$ 15cm). The film was exposed with Cobalt-60 ${\gamma}$-ray whose beam axis was parallel to the film surface. The density distribution on the exposed film was stored in a personal computer through an image scanner (8bits) and the film density was shown as the digital value with NIH-image software. Isodose curves were obtained from the relationship between the digital value and the absorbed dose calculated from percentage depth dose and absorbed dose at the reference point. The isodose curves were also obtained using an Isodose plotter, for reference. The measurements were carried out for 31cGy (exposure time: 120seconds) and 80cGy (exposure time: 300seconds) at the reference point. While the isodose curves obtained with our system were drawn up to 60% dose range for the case of 80cGy, the isodose curves could be drawn up to 80% dose range for the case of 31cGy. Furthermore, the isodose curves almost agreed with that obtained with the isodose plotter in low dose range. However, further improvement of our system is necessary in high dose range.

  • PDF