• Title/Summary/Keyword: Low Density Planting

Search Result 97, Processing Time 0.019 seconds

Effect of the Landscape Crop, Chrysanthemum zawadskii on Reducing Soil Loss in Highland Sloping Area (경관작물 구절초의 고랭지 경사지 밭 토양유실 경감 효과)

  • Kim, Su Jeong;Sohn, Hwang Bae;Hong, Su Young;Kim, Tae Young;Lee, Jung Tae;Nam, Jung Hwan;Chang, Dong Chil;Suh, Jong Taek;Kim, Yul Ho
    • Korean Journal of Plant Resources
    • /
    • v.33 no.1
    • /
    • pp.15-23
    • /
    • 2020
  • There is high vulnerability of soil loss in sloping and highland used for agricultural production due to the low surface covering in summer rainy season. This study evaluated the surface-covering rate of landscape crop in reducing soil loss in the highland. The experiment was conducted in a 55% sloped lysimeter with three treatments of planting density using Korean native chrysanthemum, and investigated the soil coverage rate, run-off water, and soil erosion. The three treatments according to the degree of soil covering are bare soil as the control treatment TC, coverage rate of 43-59% for treatment T1, and, coverage rate of 63-81% for treatment T1, and T2. During the cultivation period, the average reduction of run-off water was 71% for treatment T1 and 76% for treatment T2, which are better, compared with the control. The reduction in eroded soil was 84% in treatment T1 and 98% for treatment T2, which is also better than the control treatment. Therefore, it is possible to alleviate the soil loss in sloping lands by planting chrysanthemum, which is superior among the perennial plant species and considered as a crop with economic value.

Effect of Seedling Age on Growth and Yield at Transplanting of Sorghum (Sorghum bicolor L. Moench) (수수 묘의 이식 시기가 생육 및 수량에 미치는 영향)

  • Jo, Su-Min;Jung, Ki-Youl;Kang, Hang-Won;Choi, Young-Dae;Lee, Jae-Saeng;Jeon, Seung-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.1
    • /
    • pp.50-56
    • /
    • 2016
  • Direct seeding of sorghum (Sorghum bicolor L. Moench) has a problem of low yield including poor establishment. This poor establishment results from poor quality seed, poor seedbed preparation, seedling pests, poor sowing technique and high soil temperature. This study sought to establish the age at which sorghum seedlings can be transplanted with minimal effects on grain yield. Transplants were raised in 128 nursery tray pot. Five seedling ages were established by transplanting at 10 (T10), 15 (T15), 20 (T20), 25 (T25) and 30 (T30) days after planting (DAP). The treatment combinations were arranged in a randomized complete block design and replicated three times with an individual plot size of $6{\times}5m^2$. Each plot had five ridges with a planting space of $0.60{\times}0.20m^2$ at one plants per stand. Results showed that seedling age on transplanting significantly affected growths and yields to sorghum after transplanting. Plant heights and diameters of transplants at T15 were longer than the other transplants. Conclusively, The advantages of this practice were better control of crop density and greater yields; either to fill gaps after emerging and thinning of crops or to compensate for a growth period that was too short for a complete crop cycle.

Characteristics of Emergence and Growth of Sorghum at Various Soil Salinities and Seeding Methods in Reclaimed Soil (간척지 수수 재배에서 토양염농도와 파종방법에 따른 입모 및 생육특성)

  • Kim, Sun;Ryu, Jin-Hee;Paik, Chae-Hoon;Lee, Su-Hwan;Oh, Yang-Yeol;Lee, Jeong-Tae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.3
    • /
    • pp.233-240
    • /
    • 2017
  • This experiment was conducted to establish a cultivation system for sorghum in reclaimed soils. Pot experiments were used to test the effects on seedling establishment of sowing depth, soil water content, and soil salinity using seeds of Nampungchal-susu and Hwanggeumchal-susu in reclaimed soil. Field experiments were also conducted to examine differences in growth characteristics and yield production, by sowing time, and planting distance. The result of the pot experiment, examining seedling establishment at various sowing depths revealed that, it was the highest 76.7% when the seeds were sown at a depth of 3 cm. Seedling establishment did not differ with soil water content between 10~30 kpa and at 51~70 kpa. No effects of seed moisture absorption before sowing were observed. Seedling establishment showed no differences with soil salinity below $3.2\;dS\;m^{-1}$, but decreased with Salinity above $4.8\;dS\;m^{-1}$. In field experiments to assess the effects on seedling establishment ratio of sowing time, Nampungchal-susu was revealed to have a high seedling establishment ratio following sowing on June 15. Hwanggeumchal-susu did not exhibits effects of sowing time, on seedling establishment ratio but exhibited higher seedling establishment when in low soil salinity conditions than when sown in high soil salinity conditions. With respect to yield, the yield of the seeds sown on June 15 was higher by 13% for Nampungchal-susu and by 29% for the Hwanggeumchal-susu than that those sown on June 25. With respect to soil salinity, the yield at a soil salinity of $3.2dS\;m^{-1}$ was lower by 23% than that at $1.6dS\;m^{-1}$ or lower for Nampungchal-susu, and was lower by 30% Hwanggeumchal-susu. With respect to planting density, both breeds showed the highest yield at $60{\times}10cm$. These results suggest that a sowing time of June 15 and a seeding distance of $60{\times}10cm$ are appropriate for sorghum in reclaimed land.

Quality of Yellow Poplar (Liriodendron tulipifera) Seedlings by the Method of Seedling Production (백합나무 양묘방법에 따른 묘목품질 비교)

  • Ryu, Keun-Ok;Song, Jeong-Ho;Choi, Hyung-Soon;Kwon, Hae-Yun;Kwon, Yong-Rak
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.3
    • /
    • pp.307-316
    • /
    • 2007
  • Yellow poplar (Liriodendron tulipifera L.) has low germination rate relatively other species, so the seedling production of Yellow poplar is a hard task. Accordingly this study was conducted to determine the optimal germination conditions for healthy seedling production and to promote survival rate after afforestation. Gemination percentage was examined at different media and seed covering materials using planting flats in the greenhouse. The best germination percentage was observed in sand for media and compound soil for covering materials. But it was time to transplant, seedlings became a poor character (i.e. height, root length, number of root, dry weight) in sand for media. In order to produce healthy seedlings, each different medium was compounded with TKS-2 (this is a gardening bed soil.) in the ratio 1:1 (v/v.), and compared two conditions. Quality of seedling was better than not mixed TKS-2 into each medium. Transplanting seedlings from greenhouse to nursery grew up rapidly 2 months later (early in August~early in October). Growth amount during two months corresponded to 85.6% and 71.3% in total growth amount of height and diameter at root collar, respectively. In the case of the competition-density effect on yellow-poplar seedlings, direct seedling produced the maximum 35 standard seedlings above 8 mm of root collar diameter per $m^2$, while transplanting seedling produced the maximum 64 standard seedlings per $m^2$. And produced seedlings of two way were significantly different rootlet while axial root and lateral root was not significantly different.

Effect of Physical, Chemical Properties and of Pelleting Solid Materials on the Germination in Pelleted Carrot Seeds (펠렛 피복물질의 물리, 화학적 특성이 당근 펠렛종자의 발아력에 미치는 영향)

  • Kang, Jum-Soon;Son, Beung-Gu;Choi, Young-Whan;Lee, Yong-Jae;Park, Young-Hoon;Choi, In-Soo
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1701-1708
    • /
    • 2007
  • Seed pelleting is generally conducted in order to save the labor for sowing and thinning by enabling the precision mechanical planting. In the present study, the influence of physical and chemical properties of pelleting solid materials was investigated on carrot seed germination. Among the pelleting solid materials evaluated, dialite, kaolin, and talc showed low bulk density and high porosity. Bentonite and dialite carried high water holding capacities of 184% and 173%, respectively, while calcium carbonate, calcium oxide, and fly ash showed relatively low water holding capacity. The pH of kaolin (6.8) and dialite (7.4) were close to neutral, while limestone (12.8), calcium oxide (13.0), and bentonite (10.0) were highly basic. High electro-conductivity was shown in limestone and calcium oxide. EDS analysis revealed that the main elemental compositions of talc were Si (71.0%) and Mg (29.0%), and those of calcium carbonate were Ca (66.6%), Si (22.9%), and Mg (10.5%). High granulation capacity was observed from talc and the mixture of talc and calcium carbonate. Seeds pelleted with bentonite showed the highest hardness. The dissolving type of the pellet layer after imbibition was split type in talc, limestone, zeolite, and fly ash, melt type in calcium carbonate and calcium oxide, and swell type in bentonite and vermiculite. The shortest dissolving time of pellet layer was observed from calcium carbonate and kaolin. The germination speed $(T_{50})$ was delayed as the size of pelleted seeds increased. The optimum size of pelleting was 19 ratio in carrot.

Bio-Degradable Plastic Mulching in Sweetpotato Cultivation (생분해성 멀칭필름을 이용한 고구마 재배)

  • Lee, Joon-Seol;Jeong, Kwang-Ho;Kim, Hag-Sin;Kim, Jeong-Ju;Song, Yeon-Sang;Bang, Jin-Ki
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.2
    • /
    • pp.135-142
    • /
    • 2009
  • This experiment was conducted to determine the usability of biodegradable plastic in the mulching cultivation of sweetpotato. For this, we investigated the physical characteristics, biodegradability, leaching, yield, workability, etc. of biodegradable films. Compared with general mulching materials, biodegradable Poly butyleneadipate-co-butylene succinate (PBSA) and PLC+starch showed $2{\sim}27$% higher tensile strength, but $2{\sim}22$% lower elongation and $2{\sim}6$% lower tear strength. In the leaching test on the biodegradable films, heavy metals were detected very little or not at all. As to difference in ground temperature according to mulching material, the temperature was high in order of PLC+starch > PBSA > Low Density Polyethylene (LDPE) > Control during the period from late June to mid July, but in order of LDPE > PLC+starch > PBSA > None during the period from late July to late September. In the mulching cultivation of sweet potato, biodegradable films PBSA (EA, EB, EC) and PLC+starch (DD, DE, DF) began to degrade after 60 days from the cut planting of sweet potato, and over 95% degraded after 120 days. The quantity of roots was 3,070 kg/10a for PBSA, 3,093 kg/10a for PLC-starch, and 2,946 kg/l10a for LDPE, showing no significant difference according to mulching material. Considering the physical characteristics, biodegradability, environment, convenience in harvesting work, yield, etc. of the films in the mulching cultivation of sweet potato, biodegradable films are expected to be very useful.

Studies on the Fruiting Phase of Rape Under the Different Cultural Conditions

  • Kae, B.M.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.12
    • /
    • pp.77-87
    • /
    • 1972
  • The fruiting phase of rape under transplanting and direct-sowing conditions has been studied at Mokpo during the 2 years period from 1970 to 1971. Two varieties, Yudal and Miyuki were used in this study. The planting space and sowing time were also incorporated into this study. The results could be summarized as follows: 1. The plant tape of rape was nearly umbrella-shaped of all, but has changed to the laid elliptical-shaped, broadly ovate and spindle-shaped under different varieties and cultural conditions in the plant diagram(Fig. 2). 2. The length of the primary branches for each nodes had a tendency to the symmetric apical curve with the apex at the upper 10-12th node in the transplanting. but to the upper bias apical curve with the apex at the upper 5-7th node in the dense-sowing(Fig.3). 3. The ear of main stem was longer, more pods, heavier 1, 000 grains and more grain yield than ear of primary branches of all, Especially, as for that, the rate of yield constitution per plant in the direct-sowing was higher than in the transplanting(Fig. 4, 5, 6, 7, 8, 9). 4. The ear-length of the primary branches for each nodes had a tendency to the relatively slowly apical curve with the apex at the upper 3-4th node in the transplanting, but to the lower bias apical curve with the apex at the upper 2nd node in the dense-sowing. Especially, the possibility of growth at the lower ears was few in the early variety (Fig. 4). 5. The number of pod per ear on the primary branches for each nodes had a .tendency to the curve of ear-length with the apex at the upper 5-8thnode in the transplanting and at the upper 4-5th node in the dense-sowing (Fig. 5). Accordingly, a high positive correlation was found between the ear-length and number of pod per ear (Table 2) 6. In the transplanting, the high rate of effective ear was from the upper nods to the 12th node, but below the 16-17th nodes was ineffective. However, in the early dense-sowing the high rate of effective was to the 7th node. but below the 10th nodes was. ineffective. Especially, in the early variety has difficult to secure of poi-numbers for ineffective of the lower nodes(Fig. 6.). 7. The density of pod setting of the ear of main stem was the longest of all ears, and the lower nods were, the shorter it became. That had a tendency to the evidently apical growth. However. in the early variety, it was lengthened according to growth of ear-length(Fig.7). 8. The pod-length of the medium nodes was longer than the upper and lower, and the possitive correlation between pod-length and number of grain per poi was very high(Table 2.). 9. In the grain yield per node of primary branches, the most yielding node of transplanting was the upper 9th node, of dense-sowing 4-5th node(Fig 8.), and the possitive correlation between grain yield per node and ear-length or number of pod per ear was very high(Table 2). 10. The grain yield of ear of main stem was higher than that of primary branches in the percentage of dependence for grain yield per plant. The limint node of 50% of dependence to cumulative grain yield per plant was the upper 7-8th node in tranplanting, in the early dense-sowing 4-5th node, and in tke late dense-sowing-3th node(Fig. 9). 11. In the weight of 1, 000 grains the lower nodes were, the lighter it becames in dense-sowing. Therefore, this was also lighter than in the transplanting to the (Fig. 10.). 12. The oil content of grain at the medium nodes was low in the early variety, but at the ear of main stem and upper 1st node it was extremely high(Fig. 11.).

  • PDF