• Title/Summary/Keyword: Low Cost Carrier Research

Search Result 42, Processing Time 0.014 seconds

Separation of $CH_4/CO_2/N_2$ Mixture by Pressure Swing Adsorption (PSA법을 이용하여 $CH_4/CO_2/N_2$ 혼합가스 중에서 메탄의 분리)

  • Cho, Woo-Ram;Jeong, Gu-Hyun;Shin, Young-Hwan;Yoo, Hee-Chan;Na, Byung-Ki
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.389-394
    • /
    • 2011
  • A compact adsorption-based process for removal of carbon dioxide and nitrogen from natural gas has been discussed. Among the adsorption-based processes, especially, the pressure swing adsorption (PSA) process has been a suitable unit operation for the purification and separation of gas because of low operation energy and cost. A step cycle is made up of pressurization, feed, equalization, blowdown and rinse. In this work, the PSA process is composed of zeolite 13X and carbon molecular sieve (CMS) for removal of carbon dioxide and nitrogen from mixed gas containing $CH_4/CO_2/N_2$ (75:21:4 vol%). A CMS selectively removes carbon dioxide and a zeolite 13X separates nitrogen from methane. CMS is investigated experimentally due to the high throughput of the faster diffusing component ($CO_2$). The gas composition of top, bottom and feed tank was measured with the gas chromatography (GC) using TCD detector, helium as carrier gas and packed column for analysis of methane, carbon dioxide, and nitrogen.

Design and Economic Analysis of Low Pressure Liquid Air Production Process using LNG cold energy (LNG 냉열을 활용한 저압 액화 공기 생산 공정 설계 및 경제성 평가)

  • Mun, Haneul;Jung, Geonho;Lee, Inkyu
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.345-358
    • /
    • 2021
  • This study focuses on the development of the liquid air production process that uses LNG (liquefied natural gas) cold energy which usually wasted during the regasification stage. The liquid air can be transported to the LNG exporter, and it can be utilized as the cold source to replace certain amount of refrigerant for the natural gas liquefaction. Therefore, the condition of the liquid air has to satisfy the available pressure of LNG storage tank. To satisfy pressure constraint of the membrane type LNG tank, proposed process is designed to produce liquid air at 1.3bar. In proposed process, the air is precooled by heat exchange with LNG and subcooled by nitrogen refrigeration cycle. When the amount of transported liquid air is as large as the capacity of the LNG carrier, it could be economical in terms of the transportation cost. In addition, larger liquid air can give more cold energy that can be used in natural gas liquefaction plant. To analyze the effect of the liquid air production amount, under the same LNG supply condition, the proposed process is simulated under 3 different air flow rate: 0.50 kg/s, 0.75 kg/s, 1.00 kg/s, correspond to Case1, Case2, and Case3, respectively. Each case was analyzed thermodynamically and economically. It shows a tendency that the more liquid air production, the more energy demanded per same mass of product as Case3 is 0.18kWh higher than Base case. In consequence the production cost per 1 kg liquid air in Case3 was $0.0172 higher. However, as liquid air production increases, the transportation cost per 1 kg liquid air has reduced by $0.0395. In terms of overall cost, Case 3 confirmed that liquid air can be produced and transported with $0.0223 less per kilogram than Base case.