• Title/Summary/Keyword: Low Complexity Chase Algorithm

Search Result 2, Processing Time 0.016 seconds

Low Computational Algorithm of Soft-Decision Extended BCH Decoding Algorithm for Next Generation DVB-RCS Systems (차세대 DVB-RCS 시스템을 위한 저 계산량 연판정 e-BCH 복호 알고리즘)

  • Park, Tae-Doo;Kim, Min-Hyuk;Lim, Byeong-Su;Jung, Ji-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.7
    • /
    • pp.705-710
    • /
    • 2011
  • In this paper, we proposed the low computational complexity soft-decision e-BCH decoding algorithm based on the Chase algorithm. In order to make the test patterns, it is necessary to re-order the least reliable received symbols. In the process of ordering and finding optimal decoding symbols, high computational complexity is required. Therefore, this paper proposes the method of low computational complexity algorithm for soft-decision e-BCH decoding process.

Effective Decoding Algorithm of Three dimensional Product Code Decoding Scheme with Single Parity Check Code (Single Parity Check 부호를 적용한 3차원 Turbo Product 부호의 효율적인 복호 알고리즘)

  • Ha, Sang-chul;Ahn, Byung-kyu;Oh, Ji-myung;Kim, Do-kyoung;Heo, Jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.9
    • /
    • pp.1095-1102
    • /
    • 2016
  • In this paper, we propose a decoding scheme that can apply to a three dimensional turbo product code(TPC) with a single parity check code(SPC). In general, SPC is used an axis with shortest code length in order to maximize a code rate of the TPC. However, SPC does not have any error correcting capability, therefore, the error correcting capability of the three-dimensional TPC results in little improvement in comparison with the two-dimensional TPC. We propose two schemes to improve performance of three dimensional TPC decoder. One is $min^*$-sum algorithm that has advantages for low complexity implementation compared to Chase-Pyndiah algorithm. The other is a modified serial iterative decoding scheme for high performance. In addition, the simulation results for the proposed scheme are shown and compared with the conventional scheme. Finally, we introduce some practical considerations for hardware implementation.