• 제목/요약/키워드: Low Alloy Steel

검색결과 375건 처리시간 0.022초

알루미늄 압출 관재의 표면 결함이 하이드로포밍 성형에 미치는 영향도에 관한 연구 (The effects of the surface defects on the hydroformability of extruded aluminum tubes)

  • 김대현;김봉준;박광수;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.247-250
    • /
    • 2005
  • The need for improved fuel efficiency, weight reduction has motivated the automotive industry to focus on aluminum alloys as a replacement for steel-based alloy. To cope with the needs for high structural rigidity with low weight, it is forecasted that substantial amount of cast components will be replaced by tubular parts which are mainly manufactured by the extruded aluminum tubes. The extrusion process is utilized to produce tubes and hollow sections. Because there is no weld seam, the circumferential mechanical properties may be uniform and advantageous for hydroforming. However the possibility of the occurrence of a surface defect is very high, especially due to the temperature increase from forming at high pressure when it comes out of the bearing and the roughness of the bearing, which cause the surface defects such as the dies line and pick-up. And when forming a extruded aluminum tube, the free surface of the tube becomes rough with increasing plastic strain. This is well known as orange peel phenomena and has a great effect not only on the surface quality of a product but also on the forming limit. In an attempt to increase the forming limit of the tubular specimen, in the present paper, surface asperities generated during the hydroforming process are polished to eliminate the weak positions of the tube which lead to a localized necking. It is shown that the forming limit of the tube can be considerably improved by simple method of polishing the surface roughness during hydroforming. And also the extent of the crack propagation caused by dies lines generated during the extrusion process is evaluated according to the deformed shape of the tube.

  • PDF

Fe계 연자성 합금 분말의 고온 압연시 자성특성에 미치는 압연인자들의 영향 (Effect of rolling parameters on soft-magnetic properties during hot rolling of Fe-based soft magnetic alloy powders)

  • 김휘준;이주호;이성호;박은수;허무영;배정찬
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.266-269
    • /
    • 2009
  • Iron-based soft magnetic materials are widely used as cores, such as transformer transformers, motors, and generators. Reducing losses generated from soft magnetic materials of these applications results in improving energy conversion efficiency. Recently, the new P/M soft magnetic material realized an energy loss of 68 W/kg with a drive magnetic flux of 1 T, at a frequency of 1 kHz, rivaling general-purpose electromagnetic steel sheet in the low frequency range of 200 Hz to 1 kHz. In this research, the effect of rolling parameters on soft magnetic properties of Fe-based powder cores was investigated. The Fe-based soft magnetic plates were produced by the hot powder rolling process after both pure Fe and Fe-4%Si powders were canned, evacuated, and sealed in Cu can. The soft magnetic properties such as energy loss and coercive power were measured by B-H curve analyzer. The soft magnetic properties of rolled sheets were measured under conditions of a magnetic flux density of 1 T at a frequency of 200 kHz. It was found that rolling reduction ratio is the most effective parameter on reducing both energy loss and coercivity because of increasing aspect ratio with reduction ratio. By increasing aspect ratio from 1 to 9 through hot rolling of pure Fe powder, a significant loss reduction of one-third that of SPS sample was achieved.

  • PDF

상변태 예측 및 열응력 해석에 의한 CrMoSC1 강의 열처리 공정 설계 (Heat Treatment Process Design of CrMoSC1 Steel by Prediction of Phase Transformation and Thermal Stress Analysis)

  • 최봉학;곽시영;김정태;최정길
    • 열처리공학회지
    • /
    • 제18권4호
    • /
    • pp.247-255
    • /
    • 2005
  • Although heat treatment is a process of great technological importance in order to obtain desired mechanical properties such as hardness, the process was required a tedious and expensive experimentation to specify the process parameters. Consequently, the availability of reliable and efficient numerical simulation program would enable easy specification of process parameters to achieve desired microstructure and mechanical properties without defects like crack and distortion. In present work, the developed numerical simulation program could predict distributions of microstructure and thermal stress in steels under different cooling conditions. The computer program is based on the finite difference method for temperature analysis and microstructural changes and the finite element method for thermal stress analysis. Multi-phase decomposition model was used for description of diffusional austenite decompositions in low alloy steels during cooling after austenitization. The model predicts the progress of ferrite, pearlite, and bainite transformations simultaneously during quenching and estimates the amount of martensite also by using Koistinen and Marburger equation. To verify the developed program, the calculated results are compared with experimental ones of casting product. Based on these results, newly designed heat treatment process is proposed and it was proved to be effective for industry.

열처리를 통한 Ni/Fe계 하이브리드 용사 코팅층의 기계적 특성 및 내식성 향상 (Improvement of the Mechanical Property and Corrosion Resistivity of the Ni-/Fe-based Hybrid Coating Layer using High-velocity Oxygen Fuel Spraying by Heat Treatment)

  • 김정준;이연주;김송이;이종재;김재헌;이석재;임현규;이민하;김휘준;최현주
    • 한국분말재료학회지
    • /
    • 제29권3호
    • /
    • pp.240-246
    • /
    • 2022
  • Novel Ni- and Fe-based alloys are developed to impart improved mechanical properties and corrosion resistance. The designed alloys are manufactured as a powder and deposited on a steel substrate using a high-velocity oxygen-fuel process. The coating layer demonstrates good corrosion resistance, and the thus-formed passive film is beneficial because of the Cr contained in the alloy system. Furthermore, during low-temperature heat treatment, factors that deteriorate the properties and which may arise during high-temperature heat treatment, are avoided. For the heattreated coating layers, the hardness increases by up to 32% and the corrosion resistance improves. The influence of the heat treatment is investigated through various methods and is considered to enhance the mechanical properties and corrosion resistance of the coating layer.

중형 선회 스크롤의 품질 특성 인자에 대한 연구 (The study on the quality characteristics factor of medium-sized orbit scroll)

  • 김재기;임정택;강순국;박종순
    • 한국산학기술학회논문지
    • /
    • 제17권9호
    • /
    • pp.718-723
    • /
    • 2016
  • 중형 차량용 에어컨에 사용되는 스크롤 압축기는 토크변동이 적고 에너지 효율이 높으며, 소음이 적어 적용이 확대되어 가고 있다. 또한 경량화에 따라 압축기를 구성하는 주요부품이 스틸에서 알루미늄으로 변경하는 등 소재에 대한 연구가 활발히 이루어지고 있다. 또한 스크롤 압축기는 고정 스크롤과 선회 스크롤의 인벌루트 랩의 가공 정밀도가 $10{\mu}m$ 이하로 정밀도가 높은 전용장비와 전용 툴은 물론 숙련된 가공기술이 요구되므로 가공 품질을 확인하기 위하여 표면조도와 윤곽도를 측정하였으며, 알루미늄을 모재로하여 양극 산화 처리하여 사용되고 있는 선회스크롤의 경도를 향상시키기 위한 방법의 일환으로 봉공처리를 수행에 따른 특성들을 살펴보았다. 알루미늄 소재는 Al-Mg-Cu계 합금으로 미량의 Ni, Fe, Zn 이 부가된 것으로 나타났으며, 표면조도는 $3{\mu}m$이하로 가공 정밀도 기준 $10{\mu}m$를 만족하였다. 또한 양극산화 후 나노다이아몬드, CNT로 봉공처리 한 경우 경도는 450 이상으로 수봉공처리의 경우 보다 50% 이상 경도가 향상됨을 알 수 있었으며, 봉공재로 사용하기 위한 소재로서 탄소나노튜브나 나노다이아몬드는 큰 차이를 보이지 않았다.