• Title/Summary/Keyword: Low Acoustic Noise

Search Result 383, Processing Time 0.024 seconds

Fluid Dynamic Bearing Spindle Motors for DLP (DLP용 유체동압베어링 스핀들모터)

  • Kim, Yeung-Cheol;Seong, Se-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.2
    • /
    • pp.82-90
    • /
    • 2011
  • The small precision spindle motors in the high value-added products including the visible home appliances such as DLP projector require not only the energy conversion devices but also high efficiency, low vibration and sound operation. However, the spindle motors using the conventional ball bearing and sintered porous metal bearing have following problems, respectively: the vibration by the irregularity of balls and the short motor life cycle by the ball's abrasion and higher sound noises by dry contact between shaft and sleeve. In this paper, it is proposed that the spindle motor with a fluid dynamic bearing is suitable for the motor to drive the color wheel of the DLP(digital lightening processor) in the visible home appliances. The proposed spindle motor is composed of the fluid dynamic bearing with both the radial force and the thrust force. The fluid dynamic bearing is solved by the finite element analysis of the mechanical field with the Reynolds equations. The magnetic part of spindle motor, which is a type of Brushless DC Motor, is designed by the electro-magnetic field analysis coupled with the Maxwell equation. And the load capacity and the friction loss of fluid dynamic bearing are analyzed to bearing clearance variation by the fabrication error in designed motor. The design of the proposed motor is implemented by the load torque caused by the eccentricity and the unbalance of the fluid dynamic bearing when the motors are fabricated in error. The prototype of the motor with the fluid dynamic bearing is manufactured, and experiment results show the vibration, sound, and phase current at no load and color wheel load of the motors in comparison. The high performance characteristics with the low vibration, the low acoustic noise and the optimal mechanical structure are verified by the experimental results.

A Study on the Absorption Performance of a Perforated Panel type of Resonator (다공패널형 공명기의 흡음성능에 관한 연구)

  • Song, Hwayoung;Yang, Yoonsang;Lee, Donghoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.224-231
    • /
    • 2016
  • When aiming to reduce the low frequency noise of a subway guest room through sound absorbing treatment methods inside the wall of a tunnel the resonator is often more effective than a porous sound absorbing material. Therefore, the perforated panel type resonator embedded with a perforated panel is proposed. The perforated panel is installed in the neck, which is then extended into the resonator cavity so that it can ensure useful volume. The absorption performance of the perforated panel type of resonator is obtained by acoustic analysis and experiment. The analytical results are in good agreement with the experimental results. In the case of multiple perforated panel type resonators, as the number of perforated panels increase, the 1st resonance frequency is moved to a low frequency band and sound absorption bandwidth is extended on the whole. In order to obtain excellent absorption performance, the impedance matching between multi-panels should be considered. When the perforated panel in the resonator is combined with a porous material, the absorption performance is highly enhanced in the anti-resonance and high frequency range. In case of the resonator inserted with perforated panels of 2, the 2nd resonance frequency is shifted to a low frequency band in proportion to the distance between perforated panels.

Prediction of Thermo-acoustic Oscillation Characteristics in a Ducted Combustor (관형 연소기의 열-음향 진동에 의한 소음 특성 예측)

  • 김재헌;이정한;이수갑;정인석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.7
    • /
    • pp.56-66
    • /
    • 1999
  • Thermoacoustic oscillation is a significant problem in cylindrical-type combustors such as common internal combustion engines, industrial furnaces, gas turbine, etc. This kind of low frequency oscillation can lead to serious consequences such as destruction of the combustor and production of strong noise. The accurate numerical simulation of thermoacoustic phenomena is a complex and challenging problem, especially when considering the chemical reaction of mixtures. As with other simulations of aerodynamics and aeroacoustics, the direct computation of thermoacoustic phenomena requires that Navier-Stokes equations be solved using accurate numerical differentiation and time-marching schemes, with non-reflecting boundary conditions. The numerical approach used here aims at qualitative analysis and efficient prediction of those problems, not at the development of an accurate scheme. The numerical prediction developed in this work is shown to be reasonably matched with experimental result.

  • PDF

Single-Stage Quasi Resonant Type PSR(Primary Side Regulation) PWM Converter for the LED Drive in TRIAC Phase Controlled Dimmer (TRIAC위상 제어 조광기에서의 LED구동을 위한 Single-Stage 준 공진형 PSR(Primary Side Regulation) PWM 컨버터)

  • Han, Jae-Hyun;Lim, Young-Cheol;Jung, Young-Gook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.2
    • /
    • pp.84-94
    • /
    • 2013
  • In case when the existing TRIAC phase controlled dimmer is drove for the LED lighting equipments, there are many problems such as the LED flicker in low phase-angles, the acoustic noise and elements damage by increase of the peak voltage in the input filter capacitor, mulfunction by insufficiency of the TRIAC holding current, and the abnormal oscillation by LC resonant. In this paper, we proposes the single-stage quasi-resonant PSR(Primary Side Regulation) PWM converter, and the design, the simulation and experiment are performed. As a result, it could confirm that the proposed PWM converter is the lighting equipments for LED drive which can alternate the existing 60W class incandescent bulbs and it has the high drive performance of the efficiency 80% and over, the power factor 0.95 and over under the normal voltage 220V. Finally, total harmonic distortion(THD) is gratified with a standard[1] of the lighting equipments and the durability is evaluated as the high reliablilty of 150,000 hours and over.

Design and Drive Characteristics of BLDC Motor Control System for Tread Mill Application (Tread Mill 구동용 BLDC 전동기 제어시스템 설계 및 운전특성)

  • 안진우;이동희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.239-246
    • /
    • 2003
  • Brushless D.C. Motor is widely used for industrial application because of high efficiency and high power density. Especially, in home appliance, BLDCM is very useful due to high control performance and low acoustic noise. In this paper, BLDCM and its controller are designed and developed for tread mill application. With the restricted stator structure, permanent magnet rotor is designed for manufacturing and cost effectiveness using CAD and FEM analysis. A ferrite magnetic material is used as a rotor magnet for the cost and temperature advantages. For a stable operation of tread mill, over current and temperature can be detected and protected. The designed BLDCM and its controller was verified by the experimental results.

Design and Fabrication of RF evaluation board for 900MHz (900MHz대역 수신기용 RF 특성평가보드의 설계 및 제작)

  • 이규복;박현식
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.3
    • /
    • pp.1-7
    • /
    • 1999
  • A single RF transceiver evaluation board have been developed for the purpose of application to the 900MHz band transceiver contained RF-IC chip And environment test was evaluated. The RF-IC chipset includes LNA(Low Noise Amplifier), down-conversion mixer, AGC(Automatic Gain Controller), switched capacitor filter and down sampling mixer. The RF evaluation board for the testing of chipset contained various external matching circuits, filters such as RF/IF SAW(Surface Acoustic Wave) filter and duplexer and power supply circuits. With the range of 2.7~3.3V the operated chip revealed moderate power consumption of 42mA. The chip was well operated at the receiving frequency of 925~960MHz. Measurement result is similar to general RF receiving specification of the 900MHz digital mobile phone.

  • PDF

An Analysis of Dynamic Behavior of Fluid Dynamic Bearing for Hard Disk Drive Spindle Motor

  • Song, Young-Han;Yoo, Jin-Gyoo;Rhim, Yoon-Chul
    • KSTLE International Journal
    • /
    • v.4 no.1
    • /
    • pp.18-26
    • /
    • 2003
  • Recently, fluid dynamic bearings (EDBs) have important applications in miniature rotating machines such as those found in the computer information storage industry, due to their outstanding low acoustic noise and NRRO (Non-Repeatable Run Out) characteristics. This research investigates the dynamic behavior of fluid dynamic bearings composed of hydrodynamic herringbone groove journal and spiral groove thrust bearing. The five degrees of freedom of FDB are considered to describe the real motion of a general rotor bearing system. The Reynolds equation and five nonlinear equations of motion for the dynamic behavior are solved simultaneously, The incompressible Reynolds equation is solved by using the finite element method (FEM) in order to calculate the pressure distribution in a fluid film and the five equations of motion by using the Runge-Kutta method. The reaction forces and moments are obtained by integrating the pressure along the fluid film. Numerical results are validated by comparing with the previously published experimental and numerical results. As a result the dynamic behavior of FDB spindle such as orbit, floating height, and angular orbit is investigated by considering the conical motion under the static and dynamic load conditions.

A hybrid navigation system of underwater vehicles using fuzzy inferrence algorithm (퍼지추론을 이용한 무인잠수정의 하이브리드 항법 시스템)

  • 이판묵;이종무;정성욱
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.170-179
    • /
    • 1997
  • This paper presents a hybrid navigation system for AUV to locate its position precisely in rough sea. The tracking system is composed of various sensors such as an inclinometer, a tri-axis magnetometer, a flow meter, and a super short baseline(SSBL) acoustic position tracking system. Due to the inaccuracy of the attitude sensors, the heading sensor and the flowmeter, the predicted position slowly drifts and the estimation error of position becomes larger. On the other hand, the measured position is liable to change abruptly due to the corrupted data of the SSBL system in the case of low signal to noise ratio or large ship motions. By introducing a sensor fusion technique with the position data of the SSBL system and those of the attitude heading flowmeter reference system (AHFRS), the hybrid navigation system updates the three-dimensional position robustly. A Kalman filter algorithm is derived on the basis of the error models for the flowmeter dynamics with the use of the external measurement from the SSBL. A failure detection algorithm decides the confidence degree of external measurement signals by using a fuzzy inference. Simulation is included to demonstrate the validity of the hybrid navigation system.

  • PDF

Study on Seabed Mapping using Two Sonar Devices for AUV Application (복수의 수중 소나를 활용한 수중 로봇의 3차원 지형 맵핑에 관한 연구)

  • Joe, Hangil;Yu, Son-Cheol
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.94-102
    • /
    • 2021
  • This study addresses a method for 3D reconstruction using acoustic data with heterogeneous sonar devices: Forward-Looking Multibeam Sonar (FLMS) and Profiling Sonar (PS). The challenges in sonar image processing are perceptual ambiguity, the loss of elevation information, and low signal to noise ratio, which are caused by the ranging and intensity-based image generation mechanism of sonars. The conventional approaches utilize additional constraints such as Lambertian reflection and redundant data at various positions, but they are vulnerable to environmental conditions. Our approach is to use two sonars that have a complementary data type. Typically, the sonars provide reliable information in the horizontal but, the loss of elevation information degrades the quality of data in the vertical. To overcome the characteristic of sonar devices, we adopt the crossed installation in such a way that the PS is laid down on its side and mounted on the top of FLMS. From the installation, FLMS scans horizontal information and PS obtains a vertical profile of the front area of AUV. For the fusion of the two sonar data, we propose the probabilistic approach. A likelihood map using geometric constraints between two sonar devices is built and a monte-carlo experiment using a derived model is conducted to extract 3D points. To verify the proposed method, we conducted a simulation and field test. As a result, a consistent seabed map was obtained. This method can be utilized for 3D seabed mapping with an AUV.

The Fabrication of the Single Crystal Wire from Cu Single Crystal Grown by the Czochralski Method and its Physical Properties (Czochralski법을 이용한 금속 단결정의 성장과 구조적, 전기적 성질에 관한 연구)

  • Park, Jeung-Hun;Cha, Su-Young;Park, Sang-Eon;Kim, Sung-Kyu;Cho, Chae-Ryong;Park, Hyuk-K.;Kim, Hyung-Chan;Jeong, Myung-Hwa;Jeong, Se-Young
    • Korean Journal of Crystallography
    • /
    • v.16 no.2
    • /
    • pp.141-148
    • /
    • 2005
  • It is well known that the general metals have a lot of grain boundaries. The grain boundaries play a negative role to increase the resistivity and to decrease the conductivity. The small resistivity and the large conductivity have been a goal of the material scientists, and no signal noise, perfect signal transfer, and the realization of the real sound are the dream of electronic engineers and audio manias. Generally, oxygen free copper (OFC) and Ohno continuous casting (OCC) copper cables have been used for the purpose of the precise signal transfer and low noise. However they still include a lot of grain boundaries. In our study, we have grown the single crystal by the Czochralski method and succeeded to produce single crystal wires from the crystal in the dimension of $0.5{\times}0.5{\times}2500mm$. The produced wire still possesses very good single crystal properties. We observed the structure of the wire, and measured the resistance and impedance. Glow Discharge Spectrometer (GDS) was used for analyzing the compositions of copper single crystals and commercial copper. Current-Voltage curve, resistance, total harmonic distortion and speaker frequency response were measured for comparing electrical and acoustic properties of two samples.