• Title/Summary/Keyword: Low -Z EPMA

Search Result 19, Processing Time 0.025 seconds

Characterization of Municipal Solid Waste (MSW) Ash Particles Using Low - Z Electron Probe X-ray Microanalysis (EPMA) (Low - Z EPMA 단일 입자 분석법을 이용한 도시 소각재 입자의 특성 분석)

  • 황희진;김혜경;노철언;이우근;박용광
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.392-393
    • /
    • 2003
  • 우리나라의 폐기물 발생총량은 꾸준히 증가추세를 보이는 가운데, 최근 생활폐기물의 처리현황을 보면 재활용이나 소각이 매년 증가하고 있다. 쓰레기 소각율이 높아지고 대형 소각시설이 증가하면서부터 소각 후에 발생하는 도시 소각재의 처리 및 재활용의 문제가 중요한 관심사가 되고 있다. 소각재의 효과적이고 안전한 취급을 위해서는 그것의 화학적 성질에 관한 지식이 중요하다. Kirby and Rimstldt$^{[1]}$ 는 Charlotte (USA)에 소재하는 두 곳의 소각로에서 나온 Municipal Solid Waste (MSW) ash를_체계적으로 분석하여 화학적 조성에 대한 연구를 행한 바 있다. (중략)

  • PDF

Single Particle Characterization of Aerosol Particles Collected During "Asian Dust" Storm Events in the Spring of 2000 and 2001, Using Low-Z Electron Probe X-ray Microanalysis (단일입자분석 (Low-Z Electron Probe X-ray Microanalysis)을 이용한 2000년, 2001년에 발생한 황사 입자의 특성분석)

  • 황희진;김혜경;노철언
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.4
    • /
    • pp.415-425
    • /
    • 2003
  • A single particle analysis, called low-Z electron probe X-ray microanalysis was applied to characterize the atmospheric aerosols collected during Asian Dust storm events in the year of 2000 and 2001. Most frequently encountered chemical species were the soil-originated species such as aluminosilicates, silicon dioxide, and calcium carbonate. Also various species such as carbon -rich, organics, sea salts, and some reacted calcium carbonate were identified. The observation of internally mixed particles oi calcium carbonate, calcium nitrate and/or calcium sulfate shows the occurrence of the heterogeneous reaction between Asian Dust particles and NO$_{x}$ and/or SO$_{x}$ species in the atmosphere.ere.

Single Particle Characterization of Aerosols at Cheju Island, Korea, Using Low-Z Electron Probe X-ray Microanalysis (Low-Z Electron Probe X-ray Microanalysis를 이용한 제주도 고산에서의 입자상물질의 단일 입자 분석)

  • 안용훈;노철언;김혜경
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.354-355
    • /
    • 2002
  • Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) Project의 1차 집중 관측기간 중에 2001년 4월 4일부터 일주일 동안 제주도 고산에서 채취한 시료에 대하여 low-Z electron probe X-ray microanalysis (low-Z EPMA)를 이용한 입자상물질의 단일 입자 분석을 수행하였다. 시료채취 장소인 제주도는 대기 중 입자상물질에 대한 대륙과 해양의 영향을 연구하는데 이상적인 장소이다 왜냐하면 제주로는 한반도, 중국대륙, 일본, 그리고 황해로 둘러 쌓여있어서 대륙간의 영향을 많이 받지만 그 자체가 청정지역이라 측정결과의 해석이 용이하기 때문이다. (중략)

  • PDF

Characterization of Summertime Aerosol Particles Collected at Subway Stations in Seoul, Korea Using Low-Z Particle Electron Probe X-ray Microanalysis

  • Kim, Bo-Wha;Jung, Hae-Jin;Song, Young-Chul;Lee, Mi-Jung;Kim, Hye-Kyeong;Kim, Jo-Chun;Sohn, Jong-Ryeul;Ro, Chul-Un
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.2
    • /
    • pp.97-105
    • /
    • 2010
  • A quantitative single particle analytical technique, denoted low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA), was applied to characterize particulate matters collected at two underground subway stations, Jegidong and Yangje stations, in Seoul, Korea. To clearly identify the source of the indoor aerosols in the subway stations, four sets of samples were collected at four different locations within the subway stations: in the tunnel; at the platform; near the ticket office; nearby outdoors. Aerosol samples collected on stages 2 and 3 ($D_p$: $10-2.5\;{\mu}m$ and $2.5-1.0\;{\mu}m$, respectively) in a 3-stage Dekati $PM_{10}$ impactor were investigated. Samples were collected during summertime in 2009. The major chemical species observed in the subway particle samples were Fe-containing, carbonaceous, and soil-derived particles, and secondary aerosols such as nitrates and sulfates. Among them, Fe-containing particles were the most popular. The tunnel samples contained 85-88% of Fe-containing particles, with the abundance of Fe-containing particles decreasing as the distances of sampling locations from the tunnel increased. The Fe-containing subway particles were generated mainly from mechanical wear and friction processes at rail-wheel-brake interfaces. Carbonaceous, soil-derived, and secondary nitrate and/or sulfate particles observed in the underground subway particles likely flowed in from the outdoor environment by human activities and the air-exchange between the subway system and the outdoors. In addition, since the platform screen doors (PSDs) limit air-mixing between the tunnel and the platform, samples collected at the platform at the Yangjae station (with PSDs) showed a marked decrease in the relative abundances of Fe-containing particles compared to the Jegidong station (without PSDs).

Single-particle Characterization of Aerosol Samples Collected at an Underground Shopping Area (단일입자분석법을 이용한 지하상가에서 채취한 실내입자의 특성분석)

  • Kang, Sun-Ei;Hwang, Hee-Jin;Park, Yu-Myung;Kang, Su-Jin;Kim, Hye-Kyung;Ro, Chul-Un
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.594-603
    • /
    • 2008
  • A single particle analytical technique, named low-Z particle electron probe X-ray microanalysis, was applied to characterize four samples collected at an underground shopping area connected to Dongdeamun subway station, in January and May 2006. Based on the analysis of their chemical compositions of the samples, many distinctive particle types are identified and the major chemical species are observed to be soil-derived particles, iron-containing particles. sulfates. nitrates, and carbonaceous particles. which are encountered both in coarse and fine fractions. Carbonaceous particles exist in carbon-rich and organic. Soil derived particles such as aluminosilicates, AlSi/C, $CaCO_3\;and\;SiO_2$ are more frequently encountered in spring samples than winter samples. Nitrate- and sulfate-con taming particles are more frequently encountered in winter samples, and those nitrate- and sulfate-containing particles mostly exist in the chemical forms of $Ca(CO_3,\;NO_3),\;Ca(NO_3,\;SO_4),\;(Na,\;Mg)NO_3\;and\;(Mg,\;Na)(NO_3,\;SO_4)$. Fe-containing particles which came from nearby subway platform are in the range of about 10% relative abundances for all the samples. It is observed that nitrate- and sulfate-containing particles and carbonaceous particles are much more frequently encountered in indoor aerosol samples than in outdoor aerosols, implying that $NO_x,\;SO_x$, and VOCs at the underground shopping area were more partitioned into aerosol phase.

Single-particle Characterization of Aerosol Particles Collected Nearby a Lead Smelter in China

  • Jung, Hae-Jin;Song, Young-Chul;Liu, Xiande;Li, Yuwu;Ro, Chul-Un
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.83-95
    • /
    • 2012
  • China has been a top producer and exporter of refined lead products in the world since the year 2000. After the phasing-out of leaded gasoline in the late 1990s, non-ferrous metallurgy and coal combustion have been identified as potential major sources of aerosol lead in China. This paper presents the single particle analytical results of ambient aerosol particles collected near a lead smelter using a scanning electron microscopy- energy dispersive x-ray spectroscopy (SEM-EDX). Aerosol particle samples were collected over a 24-hour period, starting from 8 pm on 31 May 2002, using a high volume TSP sampler. For this near source sample, 73 particles among 377 particles analyzed (accounting for 19.4%) were lead-containing particles mixed with other species (S, Cl, K, Ca, and/or C), which probably appeared to be from a nearby lead smelter. Lead-containing particles of less than $2{\mu}m$ size in the near source sample were most frequently encountered with the relative abundances of 42%. SEM-EDX analysis of individual standard particles, such as PbO, PbS, $PbSO_4$, $PbCl_2$, and $PbCO_3$, was also performed to assist in the clear identification of lead-containing aerosol particles. Lead-containing particles were frequently associated with arsenic and zinc, indicating that the smelter had emitted those species during the non-ferrous metallurgical process. The frequently encountered particles following the lead-containing particles were mineral dust particles, such as aluminosilicates (denoted as AlSi), $SiO_2$, and $CaCO_3$. Nitrate- and sulfate-containing particles were encountered frequently in $2-4{\mu}m$ size range, and existed mostly in the forms of $Ca(NO_3,SO_4)/C$, $(Mg,Ca)SO_4/C$, and $AlSi+(NO_3,SO_4)$. Particles containing metals (e.g., Fe, Cu, and As) in this near source sample had relative abundances of approximately 10%. Although the airborne particles collected near the lead smelter contained elevated levels of lead, other types of particles, such as $CaCO_3$-containing, carbonaceous, metal-containing, nitrates, sulfates, and fly-ash particles, showed the unique signatures of samples influenced by emissions from the lead smelter.