• Title/Summary/Keyword: Louvered-Fin

Search Result 23, Processing Time 0.023 seconds

Study on the Frosting Phenomenon of the Fin and Tube Heat Exchanger with a Louvered Fin (루버형 휜을 가진 휜관형 열교환기의 착상현상 연구)

  • Kim, Jung-Kuk;Kuwahara, Ken;Koyama, Shigeru;Park, Byung-Duck
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.4
    • /
    • pp.157-163
    • /
    • 2008
  • The present study investigated the pressure drop and the total frost mass of the louvered fin type heat exchanger, which is widely used at the air-conditioning system. The pressure drop due to the frosting phenomenon and the total frost mass were investigated by changing the wet bulb temperature condition of the inlet air. Hence the brain of 55wt% was used as a cooling solution instead of a common refrigerant. The temperature difference between the brine and the tube outside wall at the outlet of heat exchanger was $10^{\circ}C$, at maximum, higher than that at the inlet of heat exchanger. As the wet bulb temperatures were increased, the pressure drop was linearly increased due to the increment of frost mass. And the increment of heat exchange rate was smaller than that of inlet air enthalpy due to the increment of frost mass. The pressure drop of air side was rapidly increased due to the progress of frosting phenomena. The run time that the pressure drop occurred rapidly was decreased by the growth of frost.

  • PDF

Effect of Fin Spacings on Air-side Heat Transfer in Louvered Fin Heat Exchangers (핀 간격(間隔)이 루우버핀 열교환기(熱交換器)의 공기측(空氣側) 열전달(熱傳達)에 미치는 영향(影響))

  • Kim, S.J.;Chung, T.H.;Kwon, S.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.4
    • /
    • pp.288-294
    • /
    • 1990
  • A study has been conducted experimentally on heat transfer characteristics of louvered fin heat exchangers with various fin spacings in air. The experimental results are as follows; 1. Mean heat transfer coefficient is increased with increasing air velocity and the optimum fin spacing shows at S=5mm. 2. Pressure drop is increased with increasing air velocity and its maximum value shows at S=3.5mm and its minimum value shows at S=6mm. 3. $\bar{h}/{\Delta}P$ is decreased with increasing air velocity and its maximum value shows at S=5mm and its minimum value shows at S=3.5mm.

  • PDF

Experimental Study of Heat Transfer Characteristics in the Louvered-Fin Type Heat Exchanger (루우버휜형 열교환기의 열전달특성에 관한 실험적 연구)

  • 전창덕;홍주태;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.120-139
    • /
    • 1996
  • Experiment was performed to study the heat transfer characteristics in 27 kinds of 15 : 1 scale models of multi-louverred fin heat exchangers with a wide range of variables(R $e_{Lp}$ =100~1, 800, $L_p$/F$p$=0.3~0.9, $\theta$=20$^{\circ}$~40$^{\circ}$). Thermofoil heaters were used to heat the louver fins and the local average Nusselt number for each louver in the louver array was obtained at constant wall temperature conditions. Correlations are developed to predict the heat transfer characteristics and drag coefficients. Generally, the heat transfer characteristics in the multi-louvered fins is shown to be similar to those of the laminar heat transfer on a flat plate. As the Reynolds number, the louver pitch to fin pitch ratio$L_p$/F$p$and the louver angle($\theta$) increase respectively, the average Nusselt number increases, but the variation of average Nusselt number as a function of the louver angle is smaller than that as a function of the louver pitch to fin pitch ratio. In case of$L_p$/F$p$ <0.5, the average Nusselt number of the 3rd louver is especially lower than the others, it is expected that it is due to the flow structure such as a recirculation flow and a flow separation.

  • PDF

Heat Transfer and Friction Characteristics of Louver Fin and Tube Heat Exchangers under Wet Conditions (루버핀-관 열교환기의 습조건에서의 열전달 및 마찰특성에 대한 실험 연구)

  • Kwon, Young Chul;Chang, Keun Sun
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.73-79
    • /
    • 2008
  • An experimental study was conducted to investigate the effect of a tube row, a fin pitch and an inlet humidity on air-side heat and mass transfer performance of louvered fin-tube heat exchangers under wet conditions. Experimental conditions were varied by three fin pitches, two rows, two inlet relative humidities. Experimental results showed that the heat transfer performance decreased and the friction increased with the decrease of fin pitch, for 2 row heat exchanger. The effect of fin pitch on heat transfer performance was negligible with 3 row heat exchanger. The changes in relative humidity was not affected heat transfer and friction. However, the mass transfer performance was slightly decreased with the increase of relative humidity and with the decrease of fin pitch. The mass transfer performance of the louvered fin-tube heat exchanger decreased with the decrease of the fin pitch and was different according to the number of tube row.

Evaluation of Air-side Pressure Drop and Heat Transfer Performance of Brazing Fin-tube Heat Exchanger (브레이징 휜-관 열교환기의 공기측 열유동 성능평가)

  • 강희찬;강민철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.957-963
    • /
    • 2003
  • The present work was conducted to investigate the air-side thermal-hydraulic performance of the brazing fin-tube heat exchanger. Pressure drop and heat transfer coefficient for a plain and a louvered fin configuration were compared numerically and experimentally. It was found that the heat transfer characteristics for the plain fin were similar to the developing flow in the rectangular channel. The louver fin showed about twice better heat transfer coefficient than the plain fin. Previous empirical correlations presented by Davenport, Sunden and Svantesson, Sahnoun and Webb, Chang and Wang, Achaichia and Cowell, and Kang were compared with the present experimental data.

Flow Efficiency in Multi-Louvered Fins Having Large Louver-to-Fin Pitch Ratio

  • Kim, Nae-Hyun;Cho, Jin-Pyo;Kim, Do-Young;Kim, Hyun-Jin
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.4
    • /
    • pp.156-162
    • /
    • 2007
  • Flow visualization experiments were conducted for two louver arrays having large louver pitch ratio ($L_p/F_p=1.0$ and 1.4). Flow efficiencies and critical Reynolds numbers were obtained from the data, and were compared with existing correlations. The correlations failed to predict the present flow efficiency data adequately; some correlation overpredicted the data, while others underpredicted the data. Large louver pitch ratio of the present model, which is outside of the applicable range of the correlations may partly be responsible. The critical Reynolds numbers obtained from the present flow visualization data were in close agreement with those obtained from the heat transfer tests on actual flat tube heat exchangers. Existing correlations on the critical Reynolds number generally overpredicted the present data.

Performance Evaluation of a Parallel Flow Condenser for Automotive Air Conditioners (자동차 에어컨용 평행류 응축기의 성능평가)

  • 장혁재;강병하
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.4
    • /
    • pp.247-253
    • /
    • 2003
  • The new shape of louver-fin has been applied to a parallel flow condenser to enhance air-side heat transfer rate lot an automotive air-conditioner R- l34a is employed as a refrigerant inside the flat tube of the condenser, This problem is of particular interest in reducing the geometric size of the automotive air conditioner The effect of air flow rate on pressure drop as well as heat transfer in air side are studied in detail. Comparison of the performance is also made with that of a conventional parallel flow condenser, which is available in the market. The results obtained indicate that the total pressure drop through the pre sent condenser is not changed, while the heat transfer rate is increased by 24% at high veto city of air flow, compared with those of the conventional condenser. The parallel flow condenser with a new shape of louver-fin could be reduced in size by 20% for the equivalent condenser capacity, compared with the conventional parallel flow condenser.

Performance Test of Low Temperature Waste Heat Recovery Heat Exchanger Using Self-excited Oscillating Heat Pipe (자려 진동형 히트 파이프를 이용한 저온 폐열 회수 열교환기의 성능 실험)

  • 이욱현;이종현;김종수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.853-859
    • /
    • 2000
  • In this study, low temperature waste heat recovery heat exchanger was developed using a principle of self-excited oscillating heat pipe. The heat exchanger of serpentine type was composed of extruded flat aluminum tube with 6 channels (3 nm$\times$ 2.75nm) and louvered fin. The heat transfer area density of heat exchanger was $331.9 m^2/m^3$. Working fluid is R141b and charge ratio was 40% by volume. Heat transfer rate and the effectiveness of heat exchanger was primary concern of this study. As a result, the effectiveness of heat exchanger was about 0.4-0.67, and recovered waste heat rate was about 4.5 kW per one unit of heat exchanger.

  • PDF

Design of the Heat Dissipation Rate of Automotive Radiation (I) Analysis of Heat Dissipation (자동차용 라디에이터의 방열성능설계에 관한 연구 (I)방열성능의 해석)

  • 정종수;이춘식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.65-75
    • /
    • 1989
  • A method for analyzing the heat dissipation rates of automotive radiators has been proposed and also a new model equation of heat transfer rate of louvered fins has been proposed and tested. With the method, the effect of various design parameters on the performance of a radiator has also been studied. The proposed model equation for air-side heat transfer has made fair predictions which agree well with the experiments. Also the design value of heat dissipation rate with various fin pitches and radiator size has a good agreement with the heat dissipation of the commercial automotive radiators. Thus, the method of analyzing the radiator performance proposed in this study might be used to design new automotive radiators.

  • PDF