• 제목/요약/키워드: Loss-on-ignition

검색결과 261건 처리시간 0.031초

부산 광안대교 하부 퇴적토 오염도 평가 (Estimation of Contamination Level of Sediments at the Below of Busan Gwang-an Bridge)

  • 김석구;안재환;강성원;윤상린;이정우;이제근;임준혁;김동수;이태윤
    • 대한환경공학회지
    • /
    • 제35권11호
    • /
    • pp.809-814
    • /
    • 2013
  • 본 연구는 광안대교 하부의 퇴적토 오염조사를 위해 퇴적토의 기본물성 및 중금속 함량을 측정하였다. 퇴적물 시료의 산화물을 분석한 결과, $SiO_2$와 CaO의 경우 강하구에서 멀어 질수록 $SiO_2$는 증가하고 CaO는 감소하는 경향을 보였다. 강열감량의 경우, 7.2~14.3%의 분포를 보여 비교적 높은 값을 나타내었고 TOC는 0.9~5.5%로 지역에 따라 편차가 큰 것을 알 수 있었다. 이는 USEPA 퇴적물환경기준(비오염, 중간오염, 심한오염)에 따라 심한오염으로 평가되었고, TOC의 경우, 강하구에서 가장 먼 시료채취 지점(GW7)은 영향없음으로 평가되었고 나머지 지역은 최소영향수준으로 평가되었다. 중금속의 경우에는 USEPA와 캐나다 기준으로 평가하였을 때 모두 비오염으로 평가되어 중금속에 대한 오염도는 없는 것으로 평가되었다. 다만, 강열감량의 값이 크기 때문에 USEPA 기준으로 평가할 때 중금속의 오염은 없지만 전체적으로는 심한 오염으로 평가되었다.

비단열 정체면에서 촉매 표면반응의 천이 거동에 대한 이론적 해석 (Theoretical Analysis on Bifurcation Behavior of Catalytic Surface Reaction on Nonadiabatic Stagnation Plane)

  • 이수룡
    • 대한기계학회논문집B
    • /
    • 제28권6호
    • /
    • pp.697-704
    • /
    • 2004
  • Bifurcation behavior of ignition and extinction of catalytic reaction is theoretically investigated in a stagnation-point flow. Considering that reaction takes place only on the catalytic surface, where conductive heat losses are allowed to occur, activation energy asymptotics with a overall one-step Arrhenius-type catalytic reaction is employed. For the cases with and without the limiting reactant consumption, the analysis provides explicit expressions, which indicate the possibility of multiple steady-state solution branches. The difference between the solutions with and without reactant consumption is in the existence of an upper solution branch, and the neglect of reactant consumption is inappropriate for determining extinction conditions. For larger values of reactant consumption, the solution response is all monotone, suggesting that multiple solutions are not possible. It is shown that bifurcation Damkohler numbers increase (decrease) with increasing of conductive heat loss (gain) on the catalytic surface, which means that smaller (larger) values of the strain rate allow the surface reaction to tolerate larger heat losses (gains). Lewis number of the limiting reactant can also significantly affect bifurcation behavior in a similar way to the effect of heat loss.

석탄 비산회(Fly-Ash)의 미연탄소 함량 측정방법에 대한 고찰 (Overview on The Measurement Methods of Unburned Carbon Contents in Coal Fly-Ash)

  • 홍은표;김정현
    • 한국입자에어로졸학회지
    • /
    • 제10권4호
    • /
    • pp.131-136
    • /
    • 2014
  • The importance of waste treatments is increasing because of the lack of resources and environmental problems resulted from economic growth policy. Especially, the pollutant dust which is one of the wastes should be treated considerately because it could cause secondary damages on the human health as well as environmental systems. Recently, massive amount of coal fly-ash is being produced in thermoelectric power plants. In this study, we compared two general methods used in estimating the amount of unburned carbon in fly-ashes to categorize the coal fly-ashes into several groups following their carbon contents. One is the "loss on ignition(KS L 5405) method" which estimates the change of mass after combustion, and it is generally used. Another one is measuring $CO_2$ gas content by burning solid carbon in the fly-ash, and it is called "$CO_2$ analysis method."

1998년 하계 여자만의 저질환경 특성 (Characteristics of the Sedimentary Environment in Yoja Bay in the Summer of 1998)

  • 허회권;김도현;안승환;박경원
    • 환경생물
    • /
    • 제18권2호
    • /
    • pp.227-235
    • /
    • 2000
  • As a part of basic investigation to Fishery Purge Project for the Special Administrative in Chollanamdo Province, the sedimentary environmental characteristics of Yoja Bay at 15 stations were studied. The analysis was carried out in July, 1998, through studies of Loss On Ignition (LOI) by depth, Total Sulfide (T-5), Chemical Oxygen Demand (COD) concentrations and Grain-size distribution. The LOI value was found to be 6.20-12.20% (mean of 8.89%), with the neighboring Sunhakri and Haksanri areas showing slightly higher values. These values were similar to the LOI values observed in the Hansan-Koje Bay and Jinju Bay areas on the southern coast of Korea. T-S and COD concentrations were found to be, respectively, 0.060-0.104 mg/gㆍd (mean of 0.052 mg/gㆍd) and 5.53-29.71 mg/gㆍd(mean of 13.24 mg/gㆍd), not exceeding eutrophication limits. T-S concentration was especially high at stations close to the central areas of the bay and inland areas, which caused by organic matter input from the nearby agricultural areas. COD concentration was very high at stations nearby the bay entrance and Doonbyungdo, but the mean value was lower than that of Hansan-Koje Bay. This leads us to believe that the level of pollution in Yoja Bay is not significant. The prevailing sediment composition was mud, consisting of 61.38% silt and 34.87% clay. [Sediments in Yoja Bay, Loss On Ignition, Total Sulfide, Chemical Oxygen Demand, Grain-Size Distribution].

  • PDF

플라이애쉬를 혼합(混合)한 굳지않은 콘크리트에 있어서 유기혼화제(有機混和劑)의 기능(機能)에 관한 연구(研究) (A Study on the Function of Organic Admixture in Fly Ash Substituting Fresh Concrete)

  • 문한영;서정우
    • 대한토목학회논문집
    • /
    • 제8권2호
    • /
    • pp.117-124
    • /
    • 1988
  • 국산 플라이애쉬 6종류에 대한 AE제의 흡착특성(吸着特性)을 살펴 본 결과 플라이애쉬 입자의 AE제흡착(吸着)은 30분 정도에서 거의 완료되었으며 강열감량이 클수록 포화흡착량이 크게 나타났다. 플라이애쉬 강열감량의 대부분은 미연소탄소(未燃燒炭素)이며 따라서 미연소탄소량이 AE콘크리트 중의 공기량을 감소시키는 요인임을 알았다. 한편, 유동화제(流動化劑)의 경우 플라이애쉬 입자의 포화흡착량은 시멘트보다 적으며 시멘트의 경우보다 분산성(分散性)도 다소 낮으나 플라이애쉬를 혼합한 콘크리트에 유동화제를 사용할 경우 유동성이 저하되는 현상은 없었다.

  • PDF

페놀 폼의 연소특성에 관한 연구 (A Study on the Combustion Characteristics of Phenol Foam)

  • 박형주
    • 한국화재소방학회논문지
    • /
    • 제24권1호
    • /
    • pp.122-127
    • /
    • 2010
  • 외부복사 열원(20, 25, 35, 50, $70kW/m^2$)과 산소/질소의 혼합가스의 농도 변화에 따른 페놀폼의 연소 특성을 분석하였다. 산소지수는 KS M ISO 4589-2를 만족하는 산소지수시험기를 사용하였으며, 점화시간, 임계열속, 그리고 질량감소속도는 ISO 5660-1를 만족하는 mass loss calorimeter를 사용하여 측정하였다. 연구결과, 외부 복사열원에서 임계열유속은 $28.99kW/m^2$, 평균질량감소속도는 $0.56{\sim}1.77g/m^2s$로 측정되었으며, 한계산소지수는 45.1%를 나타내었다. 모든 연구결과를 종합한 결과 페놀 폼이 다른 발포 물질에 비해 아주 우수한 화재안정성을 나타낸다는 것을 알 수 있었다.

Numerical analysis on in-core ignition and subsequent flame propagation to containment in OPR1000 under loss of coolant accident

  • Song, Chang Hyun;Bae, Joon Young;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.2960-2973
    • /
    • 2022
  • Since Fukushima nuclear power plant (NPP) accident in 2011, the importance of research on various severe accident phenomena has been emphasized. Particularly, detailed analysis of combustion risk is necessary following the containment damage caused by combustion in the Fukushima accident. Many studies have been conducted to evaluate the risk of local hydrogen concentration increases and flame propagation using computational code. In particular, the potential for combustion by local hydrogen concentration in specific areas within the containment has been emphasized. In this study, the process of flame propagation generated inside a reactor core to containment during a loss of coolant accident (LOCA) was analyzed using MELCOR 2.1 code. Later in the LOCA scenario, it was expected that hydrogen combustion occurred inside the reactor core owing to oxygen inflow through the cold leg break area. The main driving force of the oxygen intrusion is the elevated containment pressure due to the molten corium-concrete interaction. The thermal and mechanical loads caused by the flame threaten the integrity of the containment. Additionally, the containment spray system effectiveness in this situation was evaluated because changes in pressure gradient and concentrations of flammable gases greatly affect the overall behavior of ignition and subsequent containment integrity.

초소형 정적 연소실의 열손실 분석 (ANALYSIS OF HEAT LOSS IN A CONSTANT VOLUME MICRO COMBUSTOR)

  • 나한비;이대훈;권세진
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제25회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.231-235
    • /
    • 2002
  • A theoretical and experimental study on the combustion process in a constant volume micro combustor is described. Unlike in a macro scale constant volume combustor, the heat loss to the wall plays a major role in flame propagation in a micro micro combustor. In order to analyze the effect of heat loss on combustion phenomena, pressure transition from ignition was measured. A number of cylindrical micro combustors with different diameter and depth were used for experiment to study the effect of length scales and shape factor. The diameter of combustor ranged from 7.5mm to 22.5 mm and the height of cylinder was from 1mm to 4mm. Initial pressure was also varied for the experiment. The diagnostic methods were severely limited due to the size of the apparatus and uncertainties of certain quantities to be measured in a small-scale environment. An analytical method to derive physical quantities that are essential for performance prediction from the pressure measurements is described.

  • PDF

디젤/천연가스 반응성제어 압축착화 엔진에서 피스톤 형상에 따른 연소 특성 (Influence of Piston Bowl Geometry on Combustion of a Diesel/CNG Reactivity Controlled Compression Ignition Engine)

  • 김현수;김우영;배충식
    • 한국분무공학회지
    • /
    • 제26권2호
    • /
    • pp.57-66
    • /
    • 2021
  • The reactivity controlled compression ignition (RCCI) is the technology that provides two different types of fuel to the combustion chamber with the advantage of significantly reducing particulate matter and nitrogen oxides emissions. However, due to the characteristics of lean combustion, combustion efficiency is worsened. The conventional type of pistons for conventional diesel combustion (CDC) has mostly been used in the researches on RCCI. Because the pistons for CDC are optimized to enhance flow and target spray, the pistons are unsuitable for RCCI. In this study, a piston that is suitable for RCCI is designed to improve combustion efficiency. The new piston was designed by considering the factors such as squish geometry, bowl depth, and surface area. The experiment was carried out by fixing the energy supply to 0.9kJ/cycle and 1.5kJ/cycle respectively. The two pistons were quantitatively compared in terms of thermal efficiency and combustion efficiency.

백금촉매의 표면반응에 미치는 압력의 영향에 관한 실험 및 이론적 연구 (Experimental and Theoretical Study on the Effect of Pressure on the Surface Reaction over Platinum Catalyst)

  • 김형만
    • 한국연소학회지
    • /
    • 제5권1호
    • /
    • pp.1-6
    • /
    • 2000
  • Surface reaction occurs at a certain surface temperature when a catalyst is heated up in a reactive mixture. If homogeneous ignition does not occur, a steady state is observed because the heat produced by the surface reaction is balanced with the heat loss caused by convection, conduction and radiation. The present paper treats the effects of pressure on the surface temperature at the steady state. Hydrogen and oxygen are used as reactants and nitrogen as an inert gas. A spherical platinum catalyst of 1.5 mm in diameter is sustained in the chamber with two wires of 0.1 mm in diameter. As results, there exists a maximum steady temperature at a certain relative hydrogen concentration which increases with total pressure. At the steady state, it can be approximated that the heat release is estimated by the mass transfer considering the effect of natural convection. The experimental results are explained qualitatively by the approximation.

  • PDF