• Title/Summary/Keyword: Loss sensitivity factors

Search Result 52, Processing Time 0.956 seconds

Opposition Based Differential Evolution Algorithm for Capacitor Placement on Radial Distribution System

  • Muthukumar, R.;Thanushkodi, K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.45-51
    • /
    • 2014
  • Distribution system is a critical link between customer and utility. The control of power loss is the main factor which decides the performance of the distribution system. There are two methods such as (i) distribution system reconfiguration and (ii) inclusion of capacitor banks, used for controlling the real power loss. Considering the improvement in voltage profile with the power loss reduction, later method produces better performance than former method. This paper presents an advanced evolutionary algorithm for capacitor inclusion for loss reduction. The conventional sensitivity analysis is used to find the optimal location for the capacitors. In order to achieve a better approximation for the current candidate solution, Opposition based Differential Evolution (ODE) is introduced. The effectiveness of the proposed technique is validated through 10, 33, 34 and85-bus radial distribution systems.

Allocation of Transmission Loss for Determination of Locational Spot pricing

  • You, Chang-Seok;Min, Kyung-Il;Lee, Jong-Gi;Moon, Young-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.194-200
    • /
    • 2007
  • The deregulation problem has recently attracted attentions in a competitive electric power market, where the cost must be earmarked fairly and precisely for the customers and the Independent Power Producers (IPPs) as well. Transmission loss is an one of several important factors that determines power transmission cost. Because the cost caused by transmission losses is about $3{\sim}5%$, it is important to allocate transmission losses into each bus in a power system. This paper presents the new algorithm to allocate transmission losses based on an integration method using the loss sensitivity. It provides the buswise incremental transmission losses through the calculation of load ratios considering the transaction strategy of an overall system. The performance of the proposed algorithm is evaluated by the case studies carried out on the WSCC 9-bus and IEEE 14-bus systems.

A New Calculation of Generator Penality Factors through transposition of System Angle Reference (위상각기준의 이동을 통한 새로운 패널티 계수의 계산방법)

  • Lee, Sang-Joong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • In this paper, a new method for calculating the penalty factors of all generators including the slack bus is presented. A simple transposition of the angle reference, from the conventional slack bus to another bus where no generation exists, enables the derivation of the loss sensitivity of the slack bus. Penalty factors are obtained without any physical assumption through a simple substitution of the bus loss sensitivities. Penalty factors calculated by proposed method are not dependent on reference bus and can also be directly substituted into the general ELD equation for computing the optimal dispatch. Equations for loss sensitivities, Penalty factors and ELD are calculated simultaneously in normal power flow computation. A case study on a test system has proved the effectiveness of the proposed' angle reference transposition' method.

  • PDF

Application of the uncertainty for insertion loss measurement of silencers (소음기 감음 성능 불확도 산출 방법 연구)

  • Yu, Seung-Guk;Kim, Dae-Hyeon;Kim, Yeong-Chan;Kim, Du-Hun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1675-1680
    • /
    • 2000
  • Recently the uncertainty has been made rapid progress in various fields of industry but the uncertainty measurement method of acoustical test (i.e. Insertion loss, Absorption ratio, Transmission loss etc,) hasn't been established. In this study, the uncertainty of measurement method for ducted silencers is carried out according to ISO 7235. The standard uncertainty factors are composed of sound pressure level, microphone sensitivity and pistonphone calibration in this measurement. Sound pressure level is type A evaluation of uncertainty, microphone sensitivity and pistonphone calibration are type B evaluation of uncertainty. The combined standard uncertainty is calculated by two type evaluation. The expanded uncertainty is expressed by the combined standard uncertainty multiply k value which is yield the effective degree of freedom.

  • PDF

Economic Generation Allocation with Power Equation Constraints (모선 전력방정식을 제약조건으로 하는 경제적 발전력 연산방법)

  • Eom, Jae-Seon;Kim, Geon-Jung;Lee, Sang-Jung;Choe, Jang-Heum
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.8
    • /
    • pp.398-402
    • /
    • 2002
  • The ELD computation has been based upon the so-called B-coefficient which uses a quadratic approximation of system loss as a function of generation output. Direct derivation of system loss sensitivity based on the Jacobian-based method was developed in early 1970s', which could eliminate the dependence upon the approximate loss formula. However, both the B-coefficient and the Jacobian-based method require a complicated Procedure for calculating the system loss sensitivity included in the constraints of the optimization problem. In this paper, an ELD formulation in which only the bus power equations are defined as the constraints has been introduced. Derivation of the partial derivatives of the system loss with respect to the generator output and calculation of the penalty factors for individual generators are not required anymore in proposed method. A comprehensive solution procedure including calculation of the Jacobians and Hessians of the formulation has been presented in detail. Proposed ELD formulation has been tested on a sample system and the simulation indicated a satisfactory result.

Coordinated Wide-Area Regulation of Transmission System for Voltage Profile Improvement and Power Loss Reduction

  • Asadzadeh, Babak;Golshannavaz, Sajjad
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.5
    • /
    • pp.279-286
    • /
    • 2017
  • In this paper, an optimal approach for the wide-area regulation of control devices in a transmission network is proposed. In order to realize an improved voltage profile and reduced power loss, existing devices such as tap-changing transformers, synchronous machines, and capacitor banks should be controlled in a coordinated and on-line manner. It is well-understood that phasor measurement units in transmission substations allow the system operators to access the on-line loading and operation status of the network. Accordingly, this study proposes efficient software applications that can be employed in area operation centers. Thus, the implanted control devices can be regulated in an on-line and wide-area coordinated approach. In this process, efficient objective functions are devised for both voltage profile improvement and power loss reduction. Subsequently, sensitivity analysis is carried out to determine the best weighting factors for these objectives. Extensive numerical studies are conducted on an IEEE 14-bus test system and a real-world system named the Azarbayjan Regional Transmission Network. The obtained results are discussed in detail to highlight the promising improvements.

Sensitivity Analysis of Climate Factors on Runoff and Soil Losses in Daecheong Reservoir Watershed using SWAT (SWAT 모형을 이용한 대청댐 유역의 기후인자에 따른 유출 및 유사량 민감도 평가)

  • Ye, Lyeong;Chung, Se-Woong;Lee, Heung-Soo;Yoon, Sung-Wan;Jeong, Hee-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.7-17
    • /
    • 2009
  • Soil and Water Assessment Tool (SWAT) was used to assess the impact of potential future climate change on the water cycle and soil loss of the Daecheong reservoir watershed. A sensitivity analysis using influence coefficient method was conducted for two selected hydrological input parameters and three selected sediment input parameters to identify the most to the least sensitive parameters. A further detailed sensitivity analysis was performed for the parameters: Manning coefficient for channel (Cn), evaporation (ESCO), and sediment concentration in lateral (LAT_SED), support practice factor (USLA_P). Calibration and verification of SWAT were performed on monthly basis for 1993~2006 and 1977~1991, respectively. The model efficiency index (EI) and coefficient of determination ($R^2$) computed for the monthly comparisons of runoffs were 0.78 and 0.76 for the calibration period, and 0.58 and 0.65 for the verification period. The results showed that the hydrological cycle in the watershed is very sensitive to climate factors. A doubling of atmospheric $CO_2$ concentrations was predicted to result in an average annual flow increase of 27.9% and annual sediment yield increase of 23.3%. Essentially linear impacts were predicted between two precipitation change scenarios of -20, and 20%, which resulted in average annual flow and sediment yield changes at Okcheon of -53.8%, 63.0% and -55.3%, 65.8%, respectively. An average annual flow increase of 46.3% and annual sediment yield increase of 36.4% was estimated for a constant humidity increase 5%. An average annual flow decrease of 9.6% and annual sediment yield increase of 216.4% was estimated for a constant temperature increase $4^{\circ}C$.

Predictive Factors for Cervical Spine Injury in Patients with Minor Head Injury (경증 두부 외상을 가진 환자의 경추 손상을 예측할 수 있는 관련 인자)

  • Park, Chul Woo;Sung, Ae Jin;Lee, Jun Ho;Hwang, Seong Youn
    • Journal of Trauma and Injury
    • /
    • v.22 no.2
    • /
    • pp.154-160
    • /
    • 2009
  • Purpose: This study aimed to determine new criteria for detecting independent factors with high sensitivity in cases of cervical spine injury. We compared the sensitivity, the specificity, and the false negative predictive value (NPV) of plain radiographs with those of computed tomography for cervical spine injury in patients with minor head injury. Methods: We retrospectively reviewed the cases of 357 patients who underwent both cervical plain radiographs and computer tomography from January 2006, to September 2008. Patients were divided into two groups: the cervical spine injury group and the no cervical spine injury group. New criteria were organized based on variables that had significant differences in the logistic regression test. Results: Among the 357 patients, 78 patients had cervical spine injuries. The average age was $43.9{\pm}15.2$ yrs old, and the male-to-female ratio was 1.90. The most common mechanism of injury was motor vehicle accidents. There was a significant difference in loss of consciousness, Glasgow Coma Scale (GCS)=14, neurologic deficit, posterior neck tenderness, and abnormality of the cervical plain radiographs between the two groups on the logistic regression test. New criteria included the above five variables. If a patient has at least variable, the area under the ROC curve of the new criteria was 0.850, and the sensitivity and the false NPV were 87.2% and 5.2%, respectively. Conclusion: New criteria included loss of consciousness, GCS=14, neurologic deficit, posterior neck tenderness, and abnormality of the cervical plain radiographs. If the patient had at least 1 variable, he or she could have a of cervical spine injury with a sensitivity of 87.2% and a false NPV of 5.2%.

A Study on the Selection of Slack Bus at Application of Marginal Loss-Factor in a Competitive Electricity Market (경쟁적 전력시장에서 한계손실계수 적용시 기준모선 선정에 대한 연구)

  • Kim, Sang-Hoon;Lee, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.264-269
    • /
    • 2009
  • Marginal Loss Factor(MLF) is represented as the sensitivity of transmission loss, which is computed from the change of the generation at slack bus by the change of the load at the arbitrary bus. The MLF dependent on the selection of slack bus is one of the key factors affecting nodal pricing, Genco's profits, social welfare(SW) and Nash Equilibrium in a competitive electricity market. This paper addresses the methodology of slack bus selection by using Cournot model of Cost Based Pool market. Numerical results from sample cases show that the slack bus of MLF of the highest average is beneficial from the view points of SW.

The Development of the Transmission Marginal Loss Factors with Consideration of the Reactive Power and its Application to Energy Spot Market (무효전력을 고려한 한계송전손실계수 산정 방법론 개발 및 현물시장에의 적용)

  • 박종배;이기송;신중린;김성수
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.7
    • /
    • pp.429-436
    • /
    • 2003
  • This paper presents a new approach for evaluating the transmission marginal loss factors (MLFs) considering the reactive power. Generally, MLFs are represented as the sensitivity of transmission losses, which is computed from the change of the generation at reference bus by the change of the load at the arbitrary bus-i. The conventional evaluation method for MLFs uses the only H matrix, which is a part of jacobian matrix. Therefore, the MLFs computed by the existing method, don't consider the effect of the reactive power, although the transmission losses are a function of the reactive power as well as the active power. To compensate the limits of the existing method for evaluating MLFs, the power factor at the bus-i is introduced for reflecting the effect of the reactive power in the evaluation method of the MLFs. Also, MLFs calculated by the developed method are applied to energy spot markets to reflect the impacts of reactive power. This method is tested with the sample system with 5-bus, and analyzed how much MLFs have an effect on the bidding/offer price, market clearing price(MCP), and settlement in the competitive energy spot market. This paper compared the results of MLFs calculated by the existing and proposed method for the IEEE 14-bus system, and the KEPCO system.