• Title/Summary/Keyword: Loss on Drying

Search Result 257, Processing Time 0.031 seconds

Development of Standard Operating Procedures (SOPs), Standardization, TLC and HPTLC Fingerprinting of a Polyherbal Unani Formulation

  • Naaz, Arjumand;Viquar, Uzma;Naikodi, Mohammad Abdul Rasheed;Siddiqui, Javed Inam;Zakir, Mohammad;Kazmi, Munawwar Husain;Minhajuddin, Ahmed
    • CELLMED
    • /
    • v.11 no.4
    • /
    • pp.21.1-21.9
    • /
    • 2021
  • Background: Unani System of Medicine (USM) has its origin to Greece. To ensure and develop the quality, authenticity of Unani drugs, standardization on modern analytical parameter is essential requirement for drugs. Objectives: The aimed of the present study was to develop a standard profile of "Qurṣ-e-Mafasil" by systematic study through authenticated ingredients, pharmacognostic identification followed by physicochemical, TLC, HPTLC fingerprinting analysis as per standard protocol. Material and Methods: In this study three batches of "Qurṣ-e-Mafasil" QM were prepared by standard method as per UPI had been followed by organoleptic properties of formulation such as appearance, color, odor, taste. Powder Microscopy and physicochemical studies were carried out such as Uniformity of weight, Friability, Disintegration time, hardness, LOD, ash vales and extractive values in like aqueous, alcohol & hexane. Further qualitative tests such as Thin-Layer Chromatography (TLC), and High-Performance Thin Layer Chromatography (HPTLC) studies were also carried out to develop fingerprint pattern of the alcoholic solvent extract of QM. Phytochemical screening was carried out in different solvent extracts such as alcoholic, aqueous and chloroform extracts to detect the presence phytoconstituents in the formulation QM. Heavy metals, Microbial Load Contamination and pesticidal residues were also determined. Results: Qurṣ-e-Mafasil showed tablet-like appearance, light brown colour, mild pungent odour and acrid taste. Uniformity of weight (mg), friability (rpm), and hardness (kg/cm) and disintegration time was ranged between (500 to 503), (0.0340 to 0.038), (8.40 to 8.67) and (4-5 minutes) respectively for the three batches. Loss in weight on drying at 105℃ was ranged between (8.3425 to 8.7346). Extracted values were calculated in distilled water ranged between (30.9091 to 31.4358), hexane (1.1419 to 1.4281), and alcohol (3.3352 to 3.3962). The ash values recorded were ranged between (3.7336 to 3.8378), and acid insoluble ash (0.5859 to 0.6112).

Effects of Far-infrared Irradiance at Night on Quality of Sunlight Dried Red Pepper (Capsicum annuum L.) in Plastic Houses (비닐하우스 이용 고추 건조 시 야간 원적외선등 조사량이 품질에 미치는 영향)

  • Lee, Guang-Jae;Kim, Si-Dong;Yoon, Jung-Beom;Lee, Ki-Yeol;Choi, Kyu-Hong
    • Horticultural Science & Technology
    • /
    • v.32 no.6
    • /
    • pp.819-826
    • /
    • 2014
  • This study was carried out to investigate the effects of night-time far-infrared irradiance quality of red pepper dried in greenhouses. This study involved 4 treatments: sunlight alone (control), or sunlight plus nightly far-infrared irradiation at $250W{\cdot}6.6m^{-2}$ ($250W{\cdot}6.6m^{-2}$), far-infrared irradiation at $250W{\cdot}3.3m^{-2}$ ($250W{\cdot}3.3m^{-2}$), or far-infrared irradiation $500W{\cdot}3.3m^{-2}$ ($500W{\cdot}3.3m^{-2}$). The drying periods were 12 days in $500W{\cdot}3.3m^{-2}$ and $250W{\cdot}3.3m^{-2}$, and 14 days in $250W{\cdot}6.6m^{-2}$, and 15 days in the control. The daytime temperature was same among the treatments. The lowest temperature was at $23.8^{\circ}C$ in control, and $29.5-37.2^{\circ}C$ in far-infrared irradiation treatments. The marketable yield was 7-14% higher in far-infrared irradiation treatments compared to the control. The rate of marketability was higher in far-infrared irradiation treatments (93.6-96.3%) than in the control (87.0-87.5%). The American Spice Trade Association (ASTA) value was greatest in the $250W{\cdot}3.3m^{-2}$ treatment, followed by $250W{\cdot}6.6m^{-2}$, then $500W{\cdot}3.3m^{-2}$, and finally the control. Capsaicinoid content showed no regular trend among the treatments. Our results provide an optimized method for reducing drying time of red pepper under sunlight, and improving the quality of dried red pepper.

Effect of Freezing on the Physicochemical Properties of Semi-dried Red Pepper (냉동조건에 따른 반건조 홍고추의 물리.화학적 특성 변화)

  • Kim, Bo-Yeon;Lee, Kyoung-Hae
    • Food Science and Preservation
    • /
    • v.16 no.3
    • /
    • pp.362-370
    • /
    • 2009
  • Quality changes in semi-dried red pepper (SRP) treated with ozone water were observed upon storage (at $-18^{\circ}C$) after freezing at $-10^{\circ}C$, $-20^{\circ}C$, and $-40^{\circ}C$. Drip loss after treatment was greater than in control peppers, but no significant difference was evident between treatments (p<0.05). We observed that differences between samples decreased as storage time increased. Texture after treatment did not change significantly over a 3-month period. The redness (a-value) after treatment was greater than in the control, but no sample showed significant color alteration after the 3-month period. The capsaicinoid content decreasedas storage time increased, and was also affected by the freezing temperature. However, carotenoid content was not influenced by freezing or storage temperature. Ascorbic acid and free sugar contents showed decreases of 47% and 6.5%, respectively, after semi-drying. The results of sensory evaluation indicated no significant difference between samples in terms of color appearance.

Changes of Free Sugar and Organic Acid in the Osmotic Dehydration Process of Apples (사과의 삼투건조시 유리당과 유기산의 변화)

  • Youn, Kwang-Sup;Lee, Jun-Ho;Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.1095-1103
    • /
    • 1996
  • In order to minimize the deterioration of dried apple quality, changes of free sugar content, organic acid and ascorbic and during osmotic dehydration with sucrose at various temperature, concentration and immersion time were investigated in this study, total sugar increased as the temperature, concentration and immersion time were increased. Sucrose showed the largest change in content while fructose and glucose showed no and small changes, respectively. Large amounts of malic and fumaric acids, and small amounts of oxalic, citric, maleic and succinic acids were detected. Organic acids were high at low temperature treatment, and became higher with increasing concentration. Loss of ascorbic acid was small at the low temperature and high concentration. Effect of immersion time was negligible. Changes of free sugar, and organic and ascorbic acid followed the first-order and second-order reaction rate equations, respectively. Arrhenius equation was applied to determine the effect of temperature on reaction rate constants with high $r^2$. To predict the changes of quality, a model was established by using the optimum functions of temperature, concentration and immersion time. The model had high $r^2$ value for the quality changes during drying.

  • PDF

A Study on Quality Characteristics of pimpinella brachycarpa Kimchi during Storage at Different Temperatures (숙성 온도를 달리한 참나물 김치의 품질특성 조사)

  • 최미희;김건희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.1
    • /
    • pp.45-49
    • /
    • 2002
  • This study was conducted to enhance the value of chamnamul (Pimpinella brachycarpa (Komarov) $N_{AKAI}$) as an useful food resource. Hunter L, a, b values (lightness, redness, yellowness) of chamnamul leaf were 33.28$\pm$1.94, -10.98$\pm$0.74, 14.05$\pm$1.29 and shearing force was 2745.2g. Contents of tannin and dietary fiber were 100.9 mg%, 24.0% (freeze drying base). The minerals identified in chamnamul were Ca 7.85 g/kg, K 76.31 g/kg, Mg 4.78g/kg, Fe 0.35g/kg, Na 2.35 g/kg. Chamnamul kimchi was packed in polyethylene film (200g) and fermented at 2$0^{\circ}C$ and 4$^{\circ}C$. In color changes kimchi fermented at 2$0^{\circ}C$ showed more increase in Hunter L, a, b values than kimchi fermented at 4$^{\circ}C$. The pH of kimchi decreased and acidity increased with storage time at both temperature. Ascorbic acid contents decreased sharply with storage time. Loss of ascorbic acid contents was about 81.9% in kimchi fermented at 2$0^{\circ}C$ after 5 days, and kimchi fermented 4$^{\circ}C$ lost 77.3% of ascorbic acid after 30 days. Also reducing sugar contents decreased with storage time at 2$0^{\circ}C$ and 4$^{\circ}C$. The results of sensory evaluation showed that optimum ripening time of chamnamul kimchi was 1~3 days at 2$0^{\circ}C$ and more than 20 days at 4$^{\circ}C$.>.

Conditions for Processing of Meaty Textured Fish Protein Concentration from Filefish and Sardine (축육(畜肉) 조직(組織)과 유사(類似)한 말쥐치 및 정어리의 조직(組織) 단백질(蛋白質) 농축물(濃縮物)의 가공(加工) 조건(條件)에 관한 연구(硏究))

  • Lee, Eung-Ho;Sudibjono, Sudibjono;Kim, Se-Kwon
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.232-241
    • /
    • 1979
  • For the effective utilization of the fish resource in coastal regions, an investigation on optimum processing conditions and meat quality textured fish protein concentrate (FPC) was carried out with the fish meat of filefish and sardine. Optimum pH and sodium chloride content of fish meat were 7.5 and 1.0 %, respectively. The most effective soaking conditions were as follows ; soaking time, 30 min ; temperature of ethanol, 5 to $20^{\circ}C$ ; amount of added ethanol, 3 times the weight of the fishmeat paste ; repeated number of soaking in ethanol for filefish and sardine, 2 and 4, respectively. The ethanol remaining is meaty textured FPC could be removed effectively by forced-air drying. Yields of the product to the minced meat weight and the contents of protein lipid in meaty textured from filefish were 21.1, 77.6 and 0.2 % and those from sardine were 24.3, 75.8 and 3.6 %, respectively. Contents of essential amino acids in meaty textured FPC of filefish and sardine were not inferior to those of beef, textured soybean protein and FAO pattern. Beef meat could be substituted with the meaty textured FPC up to 50 % in the processing of typical meat balls and hamburger without any significant loss in its taste, odor and texture.

  • PDF

Constraints and opportunities to sustain future wheat yield and water productivity in semi-arid environment

  • Ahmad, Mirza Junaid;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.185-185
    • /
    • 2019
  • Sustaining future wheat production is challenged by anthropogenically forced climate warming and drying led by increased concentration of greenhouse gases all around the globe. Warming stresses, originating from the elevated $CO_2$ concentration, are continuously reported to have negative impacts on wheat growth and yield. Yet, elevated $CO_2$ concentration, despite being disparagingly blamed for promoting warming, is also associated with a phenomenon called $CO_2$ enrichment; in which wheat yield can improve due to the enhanced photosynthesis rates and less water loss through transpiration. The conflicting nature of climate warming and $CO_2$ enrichment and their interplay can have specific implications under different environments. It is established form the field and simulation studies that the two contrasting phenomena would act severely in their own respect under arid and semi-arid environments. Wheat is a dietary staple for masses in Pakistan. The country's wheat production system is under constant stress to produce more from irrigated agricultural lands, primarily lying under arid to semi-arid environments, to meet the rapidly growing domestic needs. This work comprehensively examines the warming impacts over wheat yield and water productivity (WP), with and without the inclusion of $CO_2$ enrichment, under semi-arid environment of Punjab which is the largest agricultural province of Pakistan. Future wheat yields and WPs were simulated by FAO developed AquaCrop model v 5.0. The model was run using the bias-correction climate change projections up to 2080 under two representative concentration pathways (RCP) scenarios: 4.5 and 8.5. Wheat yield and WPs decreased without considering the $CO_2$ enrichment effects owing to the elevated irrigation demands and accelerated evapotranspiration rates. The results suggested that $CO_2$ enrichment could help maintain the current yield and WPs levels during the 2030s (2021-2050); however, it might not withhold the negative climate warming impacts during the 2060s (2051-2080). Furthermore, 10 - 20 day backward shift in sowing dates could also help ease the constraints imposed by climate warming over wheat yields and WPs. Although, $CO_2$ enrichment showed promises to counteract the adverse climate warming impacts but the interactions between climate warming and $CO_2$ concentrations were quite uncertain and required further examination.

  • PDF

Standardization and HPTLC Fingerprinting of a Polyherbal Unani Formulation

  • Beg, Mirza Belal;Viquar, Uzma;Naikodi, Mohammad Abdul Rasheed;Suhail, Habiba;Kazmi, Munawwar Husain
    • CELLMED
    • /
    • v.11 no.1
    • /
    • pp.4.1-4.8
    • /
    • 2021
  • Background: The Unani system of medicine has been practised since centuries for the treatment of a range of diseases. In spite of their efficacy they have been widely criticised due to the lack of standardization and poor quality control. Standardization of Unani medicine is a valuable issue at the present because they are very prone to contamination, deterioration, adulteration and variation in composition due to biodiversity as well as careless collection. Objective: To Standardize and Development of HPTLC Fingerprinting of a polyherbal Unani formulation Qurs-e-Safa. Materials and methods: The conventional and modern analytical techniques were used to standardise Qurs-e-Safa. The study was carried into three different batches of Qurs-e-Safa prepared with its ingredients. The parameters studied are organoleptic, microscopic, physicochemical parameters, phytochemical screening, TLC, HPTLC profile, aflatoxin, microbial load and heavy metal analysis. Results and conclusion: Qurṣ-e-Sa'fa is dark yellow in colour and aromatic smell. Uniformity of diameter and weight variation were found to be 13 ± 0, and 524.7 ± 1.72 mg. friability, hardness and disintegration time of all 3 batches were found to be (0.0615 ± 0.004, 0.0885 ± 0.0047 and 0.0725 ± 0.0058), (3.5 ± 0.2886, 3.67 ± 0.1674 and 3.67 ± 0.1674) and (16 to 17 minutes). Extractive value were found to be maximum in distilled water (38.488 ± 0.20, 37.3824 ± 0.38 and 39.8177 ± 0.13) followed by alcohol (27.5406 ± 0.54, 27.5656 ± 0.32 and 26.9229 ± 0.25). Loss of weight on drying, pH, total ash, acid insoluble ash, qualitative test was set in. Phytochemical screening revealed the presence of Carbohydrates, Phenols, Resins, Proteins, Steroids, fixed oil and Flavonoids. The microbial load was found absent and heavy metals were within permissible limits. The data evolved from the study may serve as a reference to validate and also help in the quality control of other finished products in future research.

Effect of Thresher Drum-Speed on the Quality of the Milled Rice (탈곡기의 급동 속도가 도정 손실에 미치는 영향)

  • 정창주;고학균;이종호;강화석
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.10-24
    • /
    • 1979
  • It is understood that drum speed of threshers and the moisture content of paddy grains to be threshed, respectively, have a signific:mt effect upon rice recoveries. Threshing under an increased drum speed would give a high performance rate, which is the general practice in custom work threshing in association with the use of semiauto-t hreshers. In the connection, however, it may result in the promotion of grain cracks and brokens of the rice product after milling. No reference or determination for an opti mum drum speed of the thresher is made available for various grain moisture contents at the time of the threshing operation and for different rice varieties especially for the Tongil rice varieties. This study was Conducted to find out and determine effects of the drum speeds on grain losses. The grain loss was quantified in terms of recovery rates of rice grains after treatments. Samples of each of all treatments were taken from the grain sampling plate placed in the grain conveyor of threshers. The grain sample plate was specially provided for this experiment. The brown-rice, milling, and head-rice recJveries were tes ted in the laboratory mill, respectively. Two rice varieties, Akibare and Suweon 251, each with five levels of different moist\ulcornerure contents at harvest and six levels of different drum speeds of threshers, were selected and used for treatments in this experiment. Two conditions of materials were tested in the thresher. One condition was to thresh the experimental material immediately after cutting, referred to as the wet-material thr eshing in this study. The other was to thresh the experimental :material, dried to contain about 15-16 percent of the grain moisture under the shocking operation. This is referred to as the dry-material threshing in this study. In additioon, field measurements for the grain moistures and drum-sdeeds under actual operation practices of the traditional field threshing, were conducted with a view to comparing with results of the experimental treatments. The results of the study may be summarized as follows: 1. For threshing treatments of Japonica-type rice variety (Akibare) , the effect of drum speeds and levels of grain moisture at cutting upon brown-rice, milling, and head-rice recoveries were found statistically significant. No significant difference in these recovery rates was noticed regardless of whether the material was threshed right after cutting or after drying by the shocking operation. 2. For the Tongil-sister rice variety(Suweon 251), milling recovery for the varied drum-speed and the grain~moisture level at cutting was found statististically significant. Th milling recovery was much significant when associated with the wet-material thres\ulcornerhing compared to the dry-material threshing. 3. The optimum peripheral velocity to be maintained at the edge of teeth on the thr\ulcorneresher drum was determined and may be recommanded as that of about 12 to 13 meters per second in view of the maximum recovery rate of the milled rice. 4. The effect of the drum speed on the qualitative loss of the milled rice was much greater in the case of the Tongil variety than Japonica. This effect was also greater by the wet-material threshing than by the dry-material threshing. Therefore, to apply the wet-material threshing operation for the Tongil variety, in particular, it should be very important to introduce the kind of threshing technology which would maintain the drum speed at optimum. 5. A field survey for the actual drum speed of threshing operations for 50 threshers indicated that average peripheral velccity was 12.76m/sec., and that the range was from 10.50 to 14.90m/sec. Approximately, more than 30% of the experimented and measured threshers were being operated at speeds which exceeded the optimum speed determined and assessed in this study. Accordingly, it should be highly desirable and important to take counter-measures against these threshing practices of operational overspeed.

  • PDF

Effect of Thresher Drum-Speed on the Quality of the Milled Rice (탈곡기의 급동 속도가 도정 손실에 미치는 영향)

  • Chung, Chang Joo;Koh, Hak Kyun;Lee, Chong Ho;Kang, Hwa Seug
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.9-9
    • /
    • 1979
  • It is understood that drum speed of threshers and the moisture content of paddy grains to be threshed, respectively, have a signific:mt effect upon rice recoveries. Threshing under an increased drum speed would give a high performance rate, which is the general practice in custom work threshing in association with the use of semiauto-t hreshers. In the connection, however, it may result in the promotion of grain cracks and brokens of the rice product after milling. No reference or determination for an opti mum drum speed of the thresher is made available for various grain moisture contents at the time of the threshing operation and for different rice varieties especially for the Tongil rice varieties. This study was Conducted to find out and determine effects of the drum speeds on grain losses. The grain loss was quantified in terms of recovery rates of rice grains after treatments. Samples of each of all treatments were taken from the grain sampling plate placed in the grain conveyor of threshers. The grain sample plate was specially provided for this experiment. The brown-rice, milling, and head-rice recJveries were tes ted in the laboratory mill, respectively. Two rice varieties, Akibare and Suweon 251, each with five levels of different moist?ure contents at harvest and six levels of different drum speeds of threshers, were selected and used for treatments in this experiment. Two conditions of materials were tested in the thresher. One condition was to thresh the experimental material immediately after cutting, referred to as the wet-material thr eshing in this study. The other was to thresh the experimental :material, dried to contain about 15-16 percent of the grain moisture under the shocking operation. This is referred to as the dry-material threshing in this study. In additioon, field measurements for the grain moistures and drum-sdeeds under actual operation practices of the traditional field threshing, were conducted with a view to comparing with results of the experimental treatments. The results of the study may be summarized as follows: 1. For threshing treatments of Japonica-type rice variety (Akibare) , the effect of drum speeds and levels of grain moisture at cutting upon brown-rice, milling, and head-rice recoveries were found statistically significant. No significant difference in these recovery rates was noticed regardless of whether the material was threshed right after cutting or after drying by the shocking operation. 2. For the Tongil-sister rice variety(Suweon 251), milling recovery for the varied drum-speed and the grain~moisture level at cutting was found statististically significant. Th milling recovery was much significant when associated with the wet-material thres?hing compared to the dry-material threshing. 3. The optimum peripheral velocity to be maintained at the edge of teeth on the thr?esher drum was determined and may be recommanded as that of about 12 to 13 meters per second in view of the maximum recovery rate of the milled rice. 4. The effect of the drum speed on the qualitative loss of the milled rice was much greater in the case of the Tongil variety than Japonica. This effect was also greater by the wet-material threshing than by the dry-material threshing. Therefore, to apply the wet-material threshing operation for the Tongil variety, in particular, it should be very important to introduce the kind of threshing technology which would maintain the drum speed at optimum. 5. A field survey for the actual drum speed of threshing operations for 50 threshers indicated that average peripheral velccity was 12.76m/sec., and that the range was from 10.50 to 14.90m/sec. Approximately, more than 30% of the experimented and measured threshers were being operated at speeds which exceeded the optimum speed determined and assessed in this study. Accordingly, it should be highly desirable and important to take counter-measures against these threshing practices of operational overspeed.