• Title/Summary/Keyword: Loss of angle

Search Result 849, Processing Time 0.032 seconds

Degradation Properties of Epoxy Resin Used in Indoor (옥내용 에폭시 수지의 열화 특성)

  • 남기동;정중일;연복희;허창수;박영두
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.57-60
    • /
    • 2000
  • In this paper, study on the properties of the thermal degradated epoxy resin which is used in indoor insulation apparatus is performed to investigate the problems of the decreasing insulation characteristics and crack in the indoor insulation apparatus. As a parameter of variation, SEM, contact angle, surface resistivity, relative dielectric constant and weight loss are measured. As the results of the above measurements, the contact angle and surface resistivity of the epoxy resin has increased to 200$^{\circ}C$ in but at the above 200$^{\circ}C$ the values have decreased. The relative dielectric constants the thermal treated samples have increased on with the temperature increase. We find the volatile components of the epoxy resin compound has disappeared during thermal degradation by SEM. The insulation properties of the epoxy resin have increased by the 200$^{\circ}C$ but decreased in the above 200$^{\circ}C$.

  • PDF

Ewing's Sarcoma/Peripheral Primitive Neuroectodermal Tumor in the Cerebellopontine Angle : Diagnosis and Treatment

  • Choi, Ho-Yong;Kim, Yong-Hwy;Kim, Jee-Hyun;Kim, In-Ah;Choe, Ghee-Young;Kim, Chae-Yong
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.6
    • /
    • pp.359-362
    • /
    • 2011
  • Ewing's sarcoma/primitive neuroectodermal tumor (ES/PNET) is an unusual malignancy with aggressive behavior. ES/PNET in the cerebellopontine angle (CPA) is extremely uncommon, and we report on a rare case here. A 31-year-old man presented with one month history of left facial palsy, hearing loss, swallowing difficulty, and hoarseness. Magnetic resonance images showed a large mass in the left CPA and a small one in the right cerebellar hemisphere. The patient underwent a surgery for the CPA mass lesion, and the pathology was compatible with ES/PNET. Radiation therapy and chemotherapy were administered. In contrast to the initial radiologic findings resembling vestibular schwannoma or meningioma, ES/PNET had several distinct clinical features. A patient with a CPA mass and presenting unusual clinical features should be suspected of having a rare malignancy.

Prediction of Aerodynamic Loads for NREL Phase VI Wind Turbine Blade in Yawed Condition

  • Ryu, Ki-Wahn;Kang, Seung-Hee;Seo, Yun-Ho;Lee, Wook-Ryun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.157-166
    • /
    • 2016
  • Aerodynamic loads for a horizontal axis wind turbine of the National Renewable Energy Laboratory (NREL) Phase VI rotor in yawed condition were predicted by using the blade element momentum theorem. The classical blade element momentum theorem was complemented by several aerodynamic corrections and models including the Pitt and Peters' yaw correction, Buhl's wake correction, Prandtl's tip loss model, Du and Selig's three-dimensional (3-D) stall delay model, etc. Changes of the aerodynamic loads according to the azimuth angle acting on the span-wise location of the NREL Phase VI blade were compared with the experimental data with various yaw angles and inflow speeds. The computational flow chart for the classical blade element momentum theorem was adequately modified to accurately calculate the combined functions of additional corrections and models stated above. A successive under-relaxation technique was developed and applied to prevent possible failure during the iteration process. Changes of the angle of attack according to the azimuth angle at the specified radial location of the blade were also obtained. The proposed numerical procedure was verified, and the predicted data of aerodynamic loads for the NREL Phase VI rotor bears an extremely close resemblance to those of the experimental data.

Shape Optimization of Internally Finned Tube with Helix Angle (나선형 핀이 내부에 부착된 관의 형상최적화)

  • Kim, Yang-Hyun;Ha, Ok-Nam;Lee, Ju-Hee;Park, Kyoung-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.7
    • /
    • pp.500-511
    • /
    • 2007
  • The Optimal solutions of the design variables in internally finned tubes have been obtained for three-dimensional periodically fully developed turbulent flow and heat transfer. For a trapezoidal fin profile, performances of the heat exchanger are determined by considering the heat transfer rate and pressure drop, simultaneously, that are interdependent quantities. Therefore, Pareto frontier sets of a heat exchanger can be acquired by integrating CFD and a multi-objective optimization technique. The optimal values of fin widths $(d_1,\;d_2)$, fin height(h) and helix angle$(\gamma)$ are numerical1y obtained by minimizing the pressure loss and maximizing the heat transfer rate within ranges of $d_1=0.5\sim1.5mm$, $d_2=0.5\sim1.5mm$, $h=0.5\sim1.5mm$, and $\gamma=0\sim20^{\circ}$. For this, a general CFD code and a global genetic algorithm(GA) are used. The Pareto sets of the optimal solutions can be acquired after $30^{th}$ generation.

Development of Automatic Ultrasonic Testing Equipment for Pressure-Retaining Studs and Bolts in Nuclear Power Plant (원자력 발전소 STUD BOLT의 자동초음파 주사장치 개발)

  • Suh, D.M.;Park, M.H.;Hong, S.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.9 no.1
    • /
    • pp.106-110
    • /
    • 1989
  • Bolting degradation problems in primary coolant pressure boundary applications have become a major concern in the nuclear industry. In the bolts concerned, the failure mechanism was either corrosion wastage(loss of bolt diameter) or stress-corrosion cracking.(3) Here the manual ultrasonic testing of RPV(Reactor Pressure Vessel) and RCP(Reactor Coolant Pump) stud has been performed. But it is difficult to detect indications because examiner can not exactly control the rotation angle and can not distinguish the indication from signals of bolt. In many cases, the critical sizes of damage depth are very small(1-2 mm order). At critical size, the crack tends to propagatecompletly through the bolt under stress, Resulting in total fracture.(3) Automatic stud scanner for studs(bolts) was developed because the precise measurement of bolt diameter is required in this circumstance. By use of this scanner, the rotation angle of probe was exactly controlled and the exposure time of radiations was reduced.

  • PDF

A Study on Increasing Thermal Performance of Solar Collector by Utilizing Honeycomb Structures (Honeycomb을 利용한 太陽熱 集熱器의 熱效率增大에 관한 硏究)

  • 김종보;박영칠
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.4
    • /
    • pp.392-397
    • /
    • 1983
  • In the present study, improvement of the solar collector performance by utilizing honeycomb structures is being investigated. Installation of honeycomb structures inside of the collector induces the suppression of would-be natural convection phenomena within the collector enclosure spacing. It also minimizes infrared radiation heat loss from the collector absorber plate to the surrounding. Experiments have been carried out a collector with 40*20mm rectangular honeycombs, 20*20mm square honeycombs and without honeycombs. The results are presented for the three cases for comparisons. The collector model has been installed at various tilt angle from 15.deg. to 60.deg. measured from the ground. The influence of the tilt angle to the heat performance of the collector is also presented.

An On-Line Harmonic Elimination Pulse Width Modulation Scheme for Voltage Source Inverter

  • Salam, Zainal
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.43-50
    • /
    • 2010
  • This paper proposes a new harmonic elimination PWM (HEPWM) scheme for voltage source inverters (VSI) based on the curve fittings of certain polynomials functions. The resulting equations to calculate the switching angle of the HEPWM require only the addition and multiplication processes; therefore any number of harmonics to be eliminated and the fundamental amplitude of the pole switching waveform (NP1) can be controlled on-line. An extensive angle error analysis is carried out to determine the accuracy of the algorithm in comparison to the exact solution. To verify the workability of the technique, an experimental single phase VSI is constructed. The algorithm is implemented on a VSI using a 16-bit microprocessor. The results obtained from the test rig are compared to the theoretical prediction and the results of the MATLAB simulations.

Study on the Thermal Degradation Properties of Epoxy Resin for the Cast Resin Transformer (몰드변압기용 에폭시 수지의 열 열화 특성에 관한 연구)

  • Nam, K.D.;Jung, J.I.;Huh, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1572-1574
    • /
    • 2000
  • In this paper, study on the properties of the thermal degradated epoxy resin which is used in cast resin transformer is performed to investigate the problems of the decreasing insulation characteristics and crack in the cast resin transformer. In the test, contact angle, weight loss, surface resistivity and relative dielectric constant are measured. As the results of the above measurements, the epoxy resin has increased to 150$^{\circ}C$ in the contact angle and surface resistivity but at the above 150$^{\circ}C$ the values have decreased. The relative dielectric constants have increased in the thermal treated samples with the degradation temperature. Consequently, the insulation properties of the epoxy resin which is used in cast resin transformer have increased by the 150$^{\circ}C$ but decreased in the above 150$^{\circ}C$.

  • PDF

Multi-objective Optimization of a Laidback Fan Shaped Film-Cooling Hole Using Evolutionary Algorithm

  • Lee, Ki-Don;Husain, Afzal;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.2
    • /
    • pp.150-159
    • /
    • 2010
  • Laidback fan shaped film-cooling hole is formulated numerically and optimized with the help of three-dimensional numerical analysis, surrogate methods, and the multi-objective evolutionary algorithm. As Pareto optimal front produces a set of optimal solutions, the trends of objective functions with design variables are predicted by hybrid multi-objective evolutionary algorithm. The problem is defined by four geometric design variables, the injection angle of the hole, the lateral expansion angle of the diffuser, the forward expansion angle of the hole, and the ratio of the length to the diameter of the hole, to maximize the film-cooling effectiveness compromising with the aerodynamic loss. The objective function values are numerically evaluated through Reynolds- averaged Navier-Stokes analysis at the designs that are selected through the Latin hypercube sampling method. Using these numerical simulation results, the Response Surface Approximation model are constructed for each objective function and a hybrid multi-objective evolutionary algorithm is applied to obtain the Pareto optimal front. The clustered points from Pareto optimal front were evaluated by flow analysis. These designs give enhanced objective function values in comparison with the experimental designs.

CAVITATION FLOW ANALYSIS OF HYDROFOIL WITH CHANGE OF ANGLE OF ATTACK (받음각 변화에 대한 수중익형의 캐비테이션 해석)

  • Kang, T.J.;Park, W.G.;Jung, C.M.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.17-23
    • /
    • 2014
  • Cavitation causes a great deal of noise, damage to components, vibrations, and a loss of efficiency in devices, such as propellers, pump impellers, nozzles, injectors, torpedoes, etc. Thus, the cavitating flow simulation is of practical importance for many engineering systems. In the present work, a two-phase flow solver based on the homogeneous mixture model has been developed. The solver employs an implicit preconditioning, dual time stepping algorithm in curvilinear coordinates. The flow characteristics around Clark-Y hydrofoil were calculated and then validated by comparing with the experimental data. The lift and drag coefficients with changes of angle of attack and cavitation number were obtained. The results show that cavity length and lift, drag coefficient increase with increasing angle of attack.