• 제목/요약/키워드: Loss Information

검색결과 6,114건 처리시간 0.034초

딥러닝 알고리즘을 이용한 인쇄된 별색 잉크의 색상 예측 연구 (A Study on A Deep Learning Algorithm to Predict Printed Spot Colors)

  • 전수현;박재상;태현철
    • 산업경영시스템학회지
    • /
    • 제45권2호
    • /
    • pp.48-55
    • /
    • 2022
  • The color image of the brand comes first and is an important visual element that leads consumers to the consumption of the product. To express more effectively what the brand wants to convey through design, the printing market is striving to print accurate colors that match the intention. In 'offset printing' mainly used in printing, colors are often printed in CMYK (Cyan, Magenta, Yellow, Key) colors. However, it is possible to print more accurate colors by making ink of the desired color instead of dotting CMYK colors. The resulting ink is called 'spot color' ink. Spot color ink is manufactured by repeating the process of mixing the existing inks. In this repetition of trial and error, the manufacturing cost of ink increases, resulting in economic loss, and environmental pollution is caused by wasted inks. In this study, a deep learning algorithm to predict printed spot colors was designed to solve this problem. The algorithm uses a single DNN (Deep Neural Network) model to predict printed spot colors based on the information of the paper and the proportions of inks to mix. More than 8,000 spot color ink data were used for learning, and all color was quantified by dividing the visible light wavelength range into 31 sections and the reflectance for each section. The proposed algorithm predicted more than 80% of spot color inks as very similar colors. The average value of the calculated difference between the actual color and the predicted color through 'Delta E' provided by CIE is 5.29. It is known that when Delta E is less than 10, it is difficult to distinguish the difference in printed color with the naked eye. The algorithm of this study has a more accurate prediction ability than previous studies, and it can be added flexibly even when new inks are added. This can be usefully used in real industrial sites, and it will reduce the attempts of the operator by checking the color of ink in a virtual environment. This will reduce the manufacturing cost of spot color inks and lead to improved working conditions for workers. In addition, it is expected to contribute to solving the environmental pollution problem by reducing unnecessarily wasted ink.

Light-field 이미지로 변환된 다중 평면 홀로그램 영상에 대해 객체 검출 알고리즘을 적용한 평면별 객체의 깊이 정보 해석 및 조절 기법 (A Technique for Interpreting and Adjusting Depth Information of each Plane by Applying an Object Detection Algorithm to Multi-plane Light-field Image Converted from Hologram Image)

  • 배영규;신동하;이승열
    • 방송공학회논문지
    • /
    • 제28권1호
    • /
    • pp.31-41
    • /
    • 2023
  • 재생하고자 하는 3차원 이미지에서 발현되는 빛의 간섭 무늬를 계산하여 얻게 되는 Computer Generated Hologram(CGH)은 본래의 3차원 이미지와 유사관계를 찾기 힘든 형태로 형성되기에 직접적인 초점 위치 혹은 크기 등의 변환이 어려운 것으로 알려져 있다. 본논문은 이러한 문제 중 하나인 다중 평면으로 구성된 3차원 이미지 CGH의 평면별 초점 거리를 변환하는 문제를 해결하는 기술을 제안한다. 제안하는 기술은 CGH로부터 재생되는 3차원 이미지를 여러 각도에서 관측한 2차원 이미지의 집합으로 구성된 Light-Field (LF) 이미지로 변환하고, 관측한 각도별로 이동하는 객체의 위치를 객체 탐지 알고리즘인 YOLOv5(You Only Look Once version 5)로 분석한 뒤, 이를 조절함으로써 초점 거리가 변환된 LF 이미지와 이를 역변환한 결과인 CGH를 생성한다. 해당 기술은 CGH의 픽셀 사이즈가 3.6 ㎛, 해상도가 3840⨯2160인 상황에서 10 cm 거리에 재생되는 상에 적용되어 영상 품질의 큰 손실 없이 약 3 cm 정도의 범위에서 초점 거리를 변환시킬 수 있음을 시뮬레이션 분석과 실제 실험 관측을 통해 확인하였다.

다크웹 환경에서 산업기술 유출 탐지 시스템 (Industrial Technology Leak Detection System on the Dark Web)

  • 공영재;장항배
    • 스마트미디어저널
    • /
    • 제11권10호
    • /
    • pp.46-53
    • /
    • 2022
  • 오늘날 4차 산업 혁명과 대규모 R&D 지원으로 인해 국내 기업은 세계 기술력 수준의 산업기술을 보유하기 시작하였으며 중요한 자산으로 변모하였다. 국가는 기업의 중요한 산업기술을 보호하고자 국가핵심기술로 지정하였으며, 특히 원자력, 조선, 반도체와 같은 기술이 유출될 경우 해당 기업뿐만 아니라 국가 차원에서도 심각한 경쟁력 손실로 이어질 수 있다. 매년 내부자 유출, 랜섬웨어 그룹의 해킹공격, 산업스파이에 산업기술 탈취 시도가 증가하고 있으며, 탈취된 산업기술은 다크웹 환경에서의 은밀하게 거래가 이루어진다. 본 논문에서는 다크웹 환경에서 은밀하게 이루어지는 산업기술 유출을 탐지하는 시스템을 제안한다. 제안된 모델은 먼저 OSINT 환경에서 수집한 정보를 이용하여 다크웹 크롤링을 통한 데이터베이스를 구축한다. 이후 KeyBERT 모델을 이용한 산업기술 유출 키워드를 추출한 후 다크웹 환경에서의 산업기술 유출 징후를 정량적 수치로 제안한다. 마지막으로 식별된 다크웹 환경에서의 산업기술 유출 사이트를 기반으로 PageRank 알고리즘 통한 2차 유출 가능성을 탐지한다. 제안된 모델을 통해 27,317개의 중복 없는 다크웹 사이트를 수집하였으며, 100개의 원자력 특허에서 총 15,028개의 원자력 관련 키워드를 추출하였다. 가장 높은 원자력 유출 다크웹 사이트를 기반으로 2차 유출을 탐지한 결과 12개의 다크웹 사이트를 식별하였다.

Bi-LSTM 모델을 이용한 음악 생성 시계열 예측 (Prediction of Music Generation on Time Series Using Bi-LSTM Model)

  • 김광진;이칠우
    • 스마트미디어저널
    • /
    • 제11권10호
    • /
    • pp.65-75
    • /
    • 2022
  • 딥러닝은 기존의 분석 모델이 갖는 한계를 극복하고 텍스트, 이미지, 음악 등 다양한 형태의 결과물을 생성할 수 있는 창의적인 도구로 활용되고 있다. 본 고에서는 Niko's MIDI Pack 음원 파일 1,609개를 데이터 셋으로 삼아 전처리 과정을 수행하고, 양방향 장단기 기억 순환 신경망(Bi-LSTM) 모델을 이용하여, 효율적으로 음악을 생성할 수 있는 전처리 방법과 예측 모델을 제시한다. 생성되는 으뜸음을 바탕으로 음악적 조성(調聲)에 적합한 새로운 시계열 데이터를 생성할 수 있도록 은닉층을 다층화하고, 디코더의 출력 게이트에서 인코더의 입력 데이터 중 영향을 주는 요소의 가중치를 적용하는 어텐션(Attention) 메커니즘을 적용한다. LSTM 모델의 인식률 향상을 위한 파라미터로서 손실함수, 최적화 방법 등 설정 변수들을 적용한다. 제안 모델은 MIDI 학습의 효율성 제고 및 예측 향상을 위해 높은음자리표(treble clef)와 낮은음자리표(bass clef)를 구분하여 추출된 음표, 음표의 길이, 쉼표, 쉼표의 길이와 코드(chord) 등을 적용한 다채널 어텐션 적용 양방향 기억 모델(Bi-LSTM with attention)이다. 학습의 결과는 노이즈와 구별되는 음악의 전개에 어울리는 음표와 코드를 생성하며, 화성학적으로 안정된 음악을 생성하는 모델을 지향한다.

개에서 전기제모술을 이용한 첩모중생의 치료 1례 (A case of distichiasis treatment using electroepilation in a dog)

  • 강명곤;한동현;한세명;정은겸;김경민;이신호;신윤주;강주빈;이동빈;고필옥;조재현;원청길;김충희
    • 한국동물위생학회지
    • /
    • 제45권4호
    • /
    • pp.325-330
    • /
    • 2022
  • Distichiasis is one of the diseases commonly encountered in companion animals, and these abnormal eyelashes cause corneal ulcers, continuous eye irritation, eye pain, glare, epiphora, foreign body sensation and can cause corneal opacity and vision loss in severe cases. In this study, an eyelash epilation needle for animals was developed and applied to a real case, and the results were observed. In a case of corneal ulcer caused by distichiasis of a 2-year-old Shih Tzu, a high-frequency surgical instrument for animals was converted into an electric epilation needle to attempt a procedure to destroy the eyelash hair follicles on the upper eyelid. A epilation needle was developed to have a diameter of 0.1 mm and a length of 4 mm at the end of the handle of DOCTANZ 400, an electrosurgical instrument for animals only. In the procedure, 2~3 mm of an epilation needle was inserted into the hair follicle, and 1 watt of electric power was applied to the hair follicle for about 5 sec. to carry out electrolysis until white bubbles were generated around the meibomian glands thereby destroying the hair follicle. As a result, no eyelashes grew any longer in the treated area indicating that the treatment was successful. It is hoped that the method developed in this study will be applied so that it will be widely used as a treatment method for distichiasis in companion animals that can be frequently seen hereafter.

Water Level Prediction on the Golok River Utilizing Machine Learning Technique to Evaluate Flood Situations

  • Pheeranat Dornpunya;Watanasak Supaking;Hanisah Musor;Oom Thaisawasdi;Wasukree Sae-tia;Theethut Khwankeerati;Watcharaporn Soyjumpa
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.31-31
    • /
    • 2023
  • During December 2022, the northeast monsoon, which dominates the south and the Gulf of Thailand, had significant rainfall that impacted the lower southern region, causing flash floods, landslides, blustery winds, and the river exceeding its bank. The Golok River, located in Narathiwat, divides the border between Thailand and Malaysia was also affected by rainfall. In flood management, instruments for measuring precipitation and water level have become important for assessing and forecasting the trend of situations and areas of risk. However, such regions are international borders, so the installed measuring telemetry system cannot measure the rainfall and water level of the entire area. This study aims to predict 72 hours of water level and evaluate the situation as information to support the government in making water management decisions, publicizing them to relevant agencies, and warning citizens during crisis events. This research is applied to machine learning (ML) for water level prediction of the Golok River, Lan Tu Bridge area, Sungai Golok Subdistrict, Su-ngai Golok District, Narathiwat Province, which is one of the major monitored rivers. The eXtreme Gradient Boosting (XGBoost) algorithm, a tree-based ensemble machine learning algorithm, was exploited to predict hourly water levels through the R programming language. Model training and testing were carried out utilizing observed hourly rainfall from the STH010 station and hourly water level data from the X.119A station between 2020 and 2022 as main prediction inputs. Furthermore, this model applies hourly spatial rainfall forecasting data from Weather Research and Forecasting and Regional Ocean Model System models (WRF-ROMs) provided by Hydro-Informatics Institute (HII) as input, allowing the model to predict the hourly water level in the Golok River. The evaluation of the predicted performances using the statistical performance metrics, delivering an R-square of 0.96 can validate the results as robust forecasting outcomes. The result shows that the predicted water level at the X.119A telemetry station (Golok River) is in a steady decline, which relates to the input data of predicted 72-hour rainfall from WRF-ROMs having decreased. In short, the relationship between input and result can be used to evaluate flood situations. Here, the data is contributed to the Operational support to the Special Water Resources Management Operation Center in Southern Thailand for flood preparedness and response to make intelligent decisions on water management during crisis occurrences, as well as to be prepared and prevent loss and harm to citizens.

  • PDF

시멘틱 컴퓨팅 기반의 동적 작업 스케줄링 모델 및 시뮬레이션 (Semantic Computing-based Dynamic Job Scheduling Model and Simulation)

  • 노창현;장성호;김태영;이종식
    • 한국시뮬레이션학회논문지
    • /
    • 제18권2호
    • /
    • pp.29-38
    • /
    • 2009
  • 이기종의 자원들로 이루어진 컴퓨팅 환경에서 효율적인 자원 활용과 대용량의 데이터를 고속으로 처리하기 위해서는 실시간으로 변화하는 자원의 상태에 따라 대처 할 수 있는 동적인 작업 스케줄링 모델이 필요하다. 현재 이기종의 자원들에게 작업을 어떻게 분배 및 할당 할 것인지에 대하여 많은 자원 평가 방법 및 휴리스틱 기법들이 연구되었으나 이러한 방법들은 표준언어를 사용하지 않기 때문에 시스템 호환 및 확장에 어려움이 많다. 또한 다양한 자원들의 상태가 실시간으로 동적으로 변화하기 때문에 기존 연구에서 제안한 방법으로는 효율적인 처리가 불가능하거나 자원의 상태 변화에 동적으로 대처할 수 없다. 본 논문은 이러한 기존 연구들의 문제에 대한 해결책으로 W3C에서 제정한 온톨로지 표준 언어인 OWL을 이용하여 자원 온톨로지를 구축함으로써 이기종의 자원 관리를 손쉽게 할 수 있으며, 자원의 동적인 변화에 따라 작업 스케줄링하는 방법을 지식기반의 다양한 규칙들로 정의하여 추론을 통해서 최적의 자원에게 작업을 할당하는 시멘틱 컴퓨팅 기반의 동적 작업 스케줄링 모델을 제안한다. 시뮬레이션 실험 결과는 본 논문에서 제안한 작업 스케줄링 모델이 기존 모델에 비하여 낮은 작업 손실과 높은 작업 처리율 및 짧은 응답시간을 제공함으로써 이기종의 자원들로 구성된 시스템 전반에 걸쳐 안정적이고 고속의 데이터 처리를 제공할 수 있다는 사실을 증명한다.

인공지능 기법을 활용한 한반도 해역의 수질평가지수 예측모델 개발 (Development of a Water Quality Indicator Prediction Model for the Korean Peninsula Seas using Artificial Intelligence)

  • 김성수;손규희;김도연;허장무;김성은
    • 해양환경안전학회지
    • /
    • 제29권1호
    • /
    • pp.24-35
    • /
    • 2023
  • 급격한 산업화와 도시화로 인해 해양 오염이 심각해지고 있으며, 이러한 해양 오염을 실효적으로 관리하기 위해 수질평가지수(Water Quality Index, WQI)를 마련하여 활용하고 있다. 하지만 수질평가지수는 다소 복잡한 계산과정으로 인한 정보의 손실, 기준값 변동, 실무자의 계산오류, 통계적 오류 등의 불확실성(uncertainty)을 내포하고 있다. 이에 따라 국내·외에서 인공지능 기법을 활용하여 수질평가지수를 예측하기 위한 연구가 활발히 이루어지고 있다. 본 연구에서는 해양환경측정망 자료(2000 ~ 2020년)를 활용하여 우리나라 전 해역 즉, 5개의 생태구에 대한 WQI를 추정할 수 있는 가장 적합한 인공지능기법을 도출하기 위해 총 6가지의 기법(RF, XGBoost, KNN, Ext, SVM, LR)을 실험하였다. 그 결과, Random Forest 기법이 다른 기법에 비해 가장 우수한 성능을 보였다. Random Forest 기법의 WQI 점수 예측값과 실제값의 잔차 분석 결과, 모든 생태구에서 시간적 및 공간적 예측 성능이 우수한 것으로 나타났다. 이를 통해 본 연구에서 개발한 Random Forest 기법은 높은 정확도를 바탕으로 우리나라 전해역에 대한 WQI를 예측 가능할 것으로 사료된다.

딥러닝 기반 탄성파 전파형 역산 연구 개관 (A Review of Seismic Full Waveform Inversion Based on Deep Learning)

  • 편석준;박윤희
    • 지구물리와물리탐사
    • /
    • 제25권4호
    • /
    • pp.227-241
    • /
    • 2022
  • 전파형 역산은 석유가스 탐사를 위한 탄성파 자료처리 분야에서 지층의 속도 모델을 추정하는데 사용되는 역산 기법이다. 최근 탄성파 자료처리에 딥러닝 기술의 활용이 급격하게 증가하고 있는데, 전파형 역산 기술도 마찬가지로 다양한 연구가 이루어지고 있다. 초기에는 머신러닝 기술을 활용한 자료처리 기법이 전파형 역산을 위한 입력자료의 전처리 목적으로 활용되는 수준이었으나, 딥러닝 기술을 통해 전파형 역산을 직접적으로 구현하는 연구가 등장하기 시작하였다. 딥러닝 기술을 활용한 전파형 역산은 순수 데이터 기반 접근법, 물리 기반 신경망 활용법, 인코더-디코더 구조 활용법, 신경망 재매개변수화를 이용한 구현법, 물리정보 기반 신경망 기법 등으로 구분할 수 있다. 이 논문에서는 딥러닝 기반 전파형 역산 기법을 발전 과정 순서로 체계화하여 각각의 접근법에 대한 이론과 특징을 설명하였다. 전파형 역산 기술에 딥러닝 기법을 도입한 초기에는 데이터 과학의 기본 원리에 충실하게 대량의 학습자료를 준비하고 순수 데이터 기반 예측 모델을 적용하여 속도 모델을 역산하는 연구로 시작하였다. 최근 연구 동향은 탄성파 자료의 잔차나 파동방정식 자체의 물리정보를 심층 신경망에 활용하여 순수 데이터 기반 접근법의 단점을 보완해 나가는 방향으로 진행되고 있다. 이러한 발전으로 대량의 학습자료가 필요하지 않고, 전파형 역산의 태생적 한계점인 주기 놓침 현상을 완화하며 계산 시간을 획기적으로 줄일 수 있는 딥러닝 기반 전파형 역산 기술이 등장하고 있다. 딥러닝 기술의 도입으로 전파형 역산 기술은 탄성파 자료처리 분야에서 가치가 더 높아질 것으로 생각된다.

가상현실(VR)을 통한 박물관 전시공간의 확장 가능성과 아웃리치 프로그램에서의 효용성 (The Impact of Virtual Reality on the Extensibility of Exhibition Space and the Usefulness of Outreach Program in the Museum)

  • 김현아
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제7권5호
    • /
    • pp.83-92
    • /
    • 2017
  • 가상현실로 구축된 박물관의 전시공간은 현재와 다른 차원에 존재하는 현실로써 시공간의 제약을 받지 않기 때문에 효율적인 박물관 운영을 위한 실천방안이 될 수 있다. 특히 움직일 수 없는 물리적 공간을 이동 가능한 콘텐츠로 바꾸어주는 가상현실의 특성은 '박물관 밖 박물관'을 표방하는 박물관 아웃리치 프로그램에서 다음과 같은 긍정적 효과를 불러온다. 첫째, 물리적 환경에 구애받지 않는 편의성으로 보다 많은 사람들에게 박물관 경험의 기회를 제공한다. 둘째, 전시동선을 따라가며 박물관의 콘텐츠들을 맥락적으로 이해할 수 있게 한다. 셋째, 동일한 전시를 동시기에 관람할 수 있어 의미공유를 통한 사회적 담론 형성이 가능하다. 넷째, 전시교체가 손쉽고 이용자들에게 풍부한 콘텐츠를 제공할 수 있다. 다섯째, 전시공간을 그대로 기록함으로써 아카이브로서의 가치가 높다. 여섯째, 오감을 통한 직접경험 방식이 관람객들을 관찰자에서 능동적 조작자로 전환시킨다. 일곱째, 아웃리치 프로그램의 참여 대상층을 넓히고 그에 맞는 교육콘텐츠를 개발할 수 있다. 이처럼 박물관에서의 가상현실 도입은 전시공간을 확장하여 박물관 경험의 기회를 증폭시킨다는 점에서 박물관이 문화복지를 실현하고 소통력 높은 공공기관이 되기 위한 지름길이 될 것이다.