• Title/Summary/Keyword: Loss Cost

Search Result 1,748, Processing Time 0.028 seconds

Evaluation for System Reliability taking into consideration Customer Interruption Cost (수용가 정전비용을 고려한 전력계통 공급신뢰도 평가)

  • Choi, Sang-Bong;Kim, Dae-Kyeong;Jeong, Seong-Hwan;Kim, Ho-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.133-135
    • /
    • 2002
  • It is raised for methodology to evaluate power system reliability using interruption cost which is converted customer loss due to interruption into cost according to power industry is rushed into competition appearance. This paper presents algorithms to evaluate reliability of distribution power system taking into consideration customer interruption cost. Customer interruption cost is considered as one of the valuable index to estimate reliability of the distribution power system from customer situation. Also. this paper estimate evaluation results regarding the reliability of distribution power system using a sample model system. Finally, evaluation results of unserved energy and system interruption cost based on customer interruption cost are shown in detail.

  • PDF

Optimal Capacity and Allocation of Distributed Generation by Minimum Operation Cost in Distribution Systems

  • Shim Hun;Park Jung-Hoon;Bae In-Su;Kim Jin-O
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.1
    • /
    • pp.9-15
    • /
    • 2005
  • In the operation of distribution systems, DGs (Distributed Generations) are installed as an alternative to extension and the establishment of substations, transmission and distribution lines according to the increasing power demand. In the operation planning of DGs, determining optimal capacity and allocation achieves economical profitability and improves the reliability of power distribution systems. This paper proposes a determining method for the optimal number, size and allocation of DGs in order to minimize the operation costs of distribution systems. Capacity and allocation of DGs for economical operation planning duration are determined to minimize total cost composed with power buying cost, operation cost of DGs, loss cost and outage cost using the GA (Genetic Algorithm).

A Study on Effective Enhancement of Load Power Factor Using the Load Power Factor Sensitivity of Generation Cost

  • Lee Byung Ha;Kim Jung-Hoon
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.3
    • /
    • pp.252-259
    • /
    • 2005
  • Various problems such as increase of power loss and voltage instability may often occur in the case of low load power factor. The demand of reactive power increases continuously with the growth of active power and restructuring of electric power companies makes the comprehensive management of reactive power a troublesome problem, so that the systematic control of load power factor is required. In this paper, the load power factor sensitivity of generation cost is derived and it is used for effectively determining the locations of reactive power compensation devices and for enhancing the load power factor appropriately. In addition, voltage variation penalty cost is introduced and integrated costs including voltage variation penalty cost are used for determining the value of load power factor from the point of view of economic investment and voltage regulation. It is shown through application to a large-scale power system that the load power factor can be enhanced effectively using the load power factor sensitivity and the integrated cost.

Reliability estimation and optimal capacity and allocation by distributed generation installation (분산전원 설치에 따른 신뢰도 평가와 최적용량과 위치결정)

  • Park, Jung-Hoon;Shin, Dong-Suk;Kim, Jin-O;Kim, Kyu-Ho;Cho, Jong-Man
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.151-153
    • /
    • 2003
  • This paper proposes determining a optimal number, size and allocation of DGs(Distributed Generations) needed to minimize operation cost of distribution system, obtains economic benefit in operation planning of DG and improves system reliability. System reliability is assessed whether DG install and reliability cost consider. DG optimal allocations are determined to minimize total cost with power buying cost, operation cost of DG, loss cost and outage cost using GA(Genetic Algorithm). And it was determined installed load-point and order.

  • PDF

A Modified Target Costing Technique to Improve Product Quality from Cost Consideration

  • Wu, Hsin-Hung
    • International Journal of Quality Innovation
    • /
    • v.6 no.2
    • /
    • pp.31-45
    • /
    • 2005
  • The target costing technique, mathematically discussed by Sauers, only uses the $C_p$ index along with Taguchi loss function and ${\bar{X}}-R$ control charts to set up goal control limits. The new specification limits derived from Taguchi loss function is linked through the $C_p$ value to ${\bar{X}}-R$ control charts to obtain goal control limits. This study further considers the reflected normal loss function as well as the $C_{pk}$ index along with its lower confidence interval in forming goal control limits. With the use of lower confidence interval to replace the point estimator of the $C_{pk}$ index and reflected normal loss function proposed by Spiring to measure the loss to society, this modified and improved target costing technique would become more robust and applicable in practice. Finally, an example is provided to illustrate how this modified and improved target costing technique works.

The Socioeconomic Cost of Diseases in Korea (질병의 사회.경제적 비용 추계)

  • Ko, Suk-Ja;Jung, Young-Ho
    • Journal of Preventive Medicine and Public Health
    • /
    • v.39 no.6
    • /
    • pp.499-504
    • /
    • 2006
  • Objectives : The aim of the study was to estimate the annual socioeconomic cost of diseases in Korea. Methods : We estimate both the direct and indirect costs of diseases in Korea during 2003 using a prevalence-based approach. The direct cost estimates included medical expenditures, traffic costs and caregiver's cost, and the indirect costs, representing the loss of production, included lost workdays due to illness and lost earnings due to premature death, which were estimated based on the human capital theory. The cost estimates were reported at three different discount rates (0, 3 and 5%). Results : The cost of diseases in Korea during 2003 was 38.4 trillion won based on 0% discount rate. This estimate represents approximately 5.3% of GDP The direct and indirect costs were estimated to be 22.5 trillion (58.5% of total cost) and 15.9 trillion won (41.5%), respectively. It was also found that the cost for those aged $40\sim49$ accounted for the largest proportion (21.7%) in relation to age groups. The cost of diseases for males was 23.5% higher than that for females. For major diseases, the total socioeconomic costs were 16.0, 13.4, 11.3 and 11.19% for neoplasms, and diseases of the digestive, respiratory and circulatory systems, respectively. Conclusions : This study can be expected to provide valuable information for determining intervention and funding priorities, and for planning health policies.

Cost Allocation of Heat and Electricity on a Steam-Turbine Cogeneration (증기터빈 열병합발전에서 열과 전기의 비용배분)

  • Kim, Deok-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.9
    • /
    • pp.624-630
    • /
    • 2008
  • When various kinds of outputs are produced from a single energy system, the methodology which allocates the common cost to each output cost is very important because it is directly related with the profit and loss of producers and purchasers. In the cost allocation methodology of the heat and the electricity on a cogeneration, there are energy method, work method, proportional method, benefit distribution method, exergetic methods, and so on. On the other hand, we have proposed a worth method which can be applied to any system. The definition of this methodology is that the unit cost of a product is proportion to the worth. Where, worth is a certain evaluating basis that can equalize the worth of products. In this study, we applied worth method to a steam-turbine cogeneration which produces 22.2 MW of electricity and 44.4 Gcal/h of heat, and then we allocated 2,578 $/h of common cost to electricity cost and heat cost. Also, we compared with various cost allocation methods. As the result, we conclude that exergy of various kinds of worth basis evaluates the worth of heat and electricity most reasonably on this system.

Cost Estimating of Heat and Electricity on a Gas-Turbine Cogeneration (가스터빈 열병합발전에서 생산된 열과 전기의 원가산정)

  • Kim, Deok-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.351-356
    • /
    • 2008
  • When various kinds of outputs are produced from a single energy system, the methodology which allocates the common cost to each output cost is very important because it is directly related with the profit and loss of producers and purchasers. In the cost allocation methodology of the heat and the electricity on a cogeneration, there are energy method, work method, proportional method, benefit distribution method, various exergetic methods, and so on. On the other hand, we have proposed a worth evaluation method which can be applied to any system. The definition of this methodology is that the unit cost of a product is proportion to the worth. Where, worth is a certain evaluating basis that can equalize the worth of products. In this study, we applied this methodology to a gas-turbine cogeneration which produces 119.2 GJ/h of electricity and 134.7 GJ/h of heat, and then we allocated 3,150 $/h of fuel cost to electricity cost and heat cost. Also, we compared with various cost allocation methods. As the result, we conclude that exergy of various kinds of worth basis evaluates the worth of heat and electricity most reasonably on this system.

  • PDF

Cost Estimating of Electricity and Steam on a Gas-Turbine Cogeneration (가스터빈 열병합발전에서 생산된 전기와 증기의 원가산정)

  • Kim, Deok-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.4
    • /
    • pp.252-259
    • /
    • 2009
  • When various kinds of outputs are produced from a single energy system, the methodology which allocates the common cost to each output cost is very important because it is directly related with the profit and loss of producers and purchasers. In the cost allocation methodology of the heat and the electricity on a cogeneration, there are energy method, work method, proportional method, benefit distribution method, various exergetic methods, and so on. On the other hand, we have proposed a worth evaluation method which can be applied to any system. The definition of this methodology is that the unit cost of a product is proportion to the worth. Where, worth is a certain evaluating basis that can equalize the worth of products. In this study, we applied this methodology to a gas-turbine cogeneration which produces 119.2 GJ/h of electricity and 134.7 GJ/h of steam, and then we allocated 3,150 $/h of fuel cost to electricity cost and steam cost. Also, we compared with various cost allocation methods. As the result, we conclude that reversible work of various kinds of worth basis evaluates the worth of heat and electricity most reasonably.