• Title/Summary/Keyword: Loosely bound-paraquat

Search Result 3, Processing Time 0.017 seconds

Characteristics of adsorption-desorption of herbicide paraquat in soils (제초제 paraquat의 토양중 흡.탈착 특성)

  • Lee, Seog-June;Kim, Byung-Ha;Kim, Jang-Eok
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.1
    • /
    • pp.70-78
    • /
    • 1998
  • This study was conducted to investigate the adsorption-desorption characteristics of herbicide paraquat on clay minerals, humic materials, and soils under the laboratory conditions. Adsorption time of paraquat on clay minerals was faster than organic materials and soils. Adsorption amount on montmorillonite, 2:1 expanding-lattice clay mineral, was largest among the adsorbents tested. The adsorption capacity of paraquat was approximately 21 % of cation exchange capacity in soils, 45.1 % in kaolinite, and 80.6% in montmorillonite. Humic materials, humic acid and fulvic acid isolated from soil II, adsorbed larger amount of paraquat than kaolinite and soils. Distribution of tightly bound type of paraquat was larger in clay mineral and soils but loosely bound type was larger in humic acid and fulvic acid. In oxidized soil, the adsorption amount of paraquat was decreased to 85.1-95.5% of original soils. Distribution of unbound and loosely bound type of paraquat was decreased in oxidized soil but tightly bound type was increased. The competition cations decreased paraquat adsorption on humic materials and soils but not affected on montmorillonite. No difference was observed as the kinds of cations. In cation-saturated adsorbents, the adsorption amount was decreased largely in humic materials and soils but decreased a little in montmorillonite. The tightly bound type of paraquat in all adsorbents was not desorbed by pH variation, sonication, and cation application but loosely bound type was desorbed. However, the desorption amount was different as a kinds of adsorbents and desorption methods.

  • PDF

Extraction Method for Paraquat from Soil (토양중 Paraquat의 효과적인 추출방법)

  • Kwon, Jin-Wook;Kim, Yong-Se;Choi, Jong-Woo;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.3
    • /
    • pp.239-244
    • /
    • 1997
  • To develope more effective extraction methods for paraquat in soil, some modification methods were accomplished in two different types of soil. For extraction of tightly bound-paraquat, conc. HCl 70ml were added with different shaking times, and then $H_2SO_4$ reflux were performed for an hour. In this case, 60 minutes shaking were optimum and recovery were increased more $1.09{\sim}1.50$ folds(84.0% in high clay contents soil, but 96.7% in low clay contents soil) and the long-time consuming step, filtration were easily done, with decreasing filtration time were shorter 4.6 folds(ca. $11{\sim}14min.$). than general paraquat analytical method(ca. $55{\sim}65min.$). And only $H_2O_2$ digestion with different volume and refluxing time resulted in recovery increasing. Nevertheless, considering analyst's safety, 30ml of $H_2O_2$ addition and 30 minutes reflux were regarded as optimum condition. Although, Kjeldahl digestion with $H_2O_2$ showed relatively high recovery, it is not significant statistically. For extraction of loosely bound-paraquat, 0.01, 0.1, 1.0, 10.0M of $NH_4Cl$ and of $CaCl_2$ compared with $1.5{\sim}24hr$ of different shaking time. There were no loosely bound residues of paraquat.

  • PDF

Residue and adsorptive capacity of paraquat in orchard soils (우리나라 과수원 토양의 Paraquat 잔류와 흡착능)

  • Chun, Jae-Chul;Kim, Sung-Eun;Park, Nam-Il;Lim, Sung-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.3
    • /
    • pp.90-95
    • /
    • 1998
  • Soil residues of paraquat (1,1-dimethyl-4,4-dipyridinium dichloride) were determined in apple, pear, grape, and peach orchards for which 15 sites each were selected randomly from the corresponding large-scale production area throughout the country. Strong adsorption capacity measured using wheat bioassay (paraquat concentration required to reduce 50% root growth of wheat, SAC-WB) was also investigated on the orchard soils and the paraquat residue level was calculated against total SAC-WB values (SAC-WB value + paraquat residue). Average bound residue of paraquat on the 60 sites was 6.9 ppm, while paraquat residue in apple orchard reached 20.2 ppm which was the highest among the orchards and was almost double as compared with those in the other three orchards. Loosely bound residue of paraquat determined on the bound residue high top five soils occurred less than 0.5 ppm detection limit. Average SAC-WB value was 276.1 ppm and there were no any correlations between the SAC-WB value and clay content, organic matter content, and cation exchange capacity of the orchard soils. Paraquat residue level of the orchard soils against total SAC-WB recorded 2.43%.

  • PDF