• 제목/요약/키워드: Loop type thermosyphon

검색결과 10건 처리시간 0.019초

루프형태의 밀폐형 Thermosyphon의 작동특성과 시스템 모델링에 관한 연구 (A Study on the Operating Characteristics and System Modelling of Closed Loop Type Thermosyphon)

  • 강명철;강용혁;이동규
    • 한국태양에너지학회 논문집
    • /
    • 제22권2호
    • /
    • pp.39-47
    • /
    • 2002
  • The thermosyphon SDHWS and the loop type thermosyphon systems are widely used for domestic hot water system. The loop type thermosyphon is a circulation device for transferring the heat produced at the evaporator to the condenser area in the loop. In this study, the operating characteristics of various working fluids being used have been identified. The working fluids employed in the study were ethanol. water, and a binary mixture of ethanol and water. The volume of working fluid used in this study were 30%, 40%, 50%, 60% and 70% of evaporator volume. It is observed that, in the thermosyphon with low volume of working fluid, such as 30% or 40%, the fluid was dried out. The flow pattern and mechanism of the heat transfer were identified through this study. Flow patterns of the binary mixture working fluid were also investigated, and the patterns were recorded in the camera. The system parameters were calculated using the thermal performance data. Modelling of the system was carried out using PSTAR method and TRNSYS program.

분리형 써모사이폰의 열전달특성에 관한 실험적 연구 (Experimental study on the heat transfer characteristics of separate type thermosyphon)

  • 정기창;이기우;유성연
    • 설비공학논문집
    • /
    • 제10권1호
    • /
    • pp.22-32
    • /
    • 1998
  • Separate type thermosyphon has larger critical heat flux than non-loop type thermosyphon, because the flooding phenomenon of vapor and liquid occurring in non-loop one does not occur. The experimental study has been carried out separate type thermosyphon with single tube. An investigation of heat transfer characteristics in separate type thermosyphon is performed experimentally. Heat transfer coefficients in an evaporator and condenser were measured experimentally. The effects of liquid filling ratio, height difference, cooling temperature and heat flux on the heat transfer coefficients were examined. As a result, the reasonable range of the liquid filling ratio and the dependence of heat transfer on vapor temperature and heat flux are obtained.

  • PDF

A Study on the Boiling Heat Transfer Characteristics Using Loop Type Thermosyphon

  • HAN, Kyu-il;CHO, Dong-Hyun
    • 수산해양기술연구
    • /
    • 제52권3호
    • /
    • pp.257-262
    • /
    • 2016
  • Flexible two-phase thermosyphons are devices that can transfer large amounts of heat flux with boiling and condensation of working fluid resulting from small temperature differences. A flexible two-phase thermosyphon consists of a evaporator, an insulation unit, and a condenser. The working fluid inside the evaporator is evaporated by heating the evaporator in the lower part of the flexible two-phase thermosyphon and the evaporated steam rises to the condenser in the upper part to transfer heat in response to the cooling fluid outside the tube. The resultant condensed working fluid flows downward along the inside surface of the tube due to gravity. These processes form a cycle. Using R134a refrigerant as the working fluid of a loop type flexible two-phase thermosyphon heat exchanger, an experiment was conducted to analyse changes in boiling heat transfer performances according to differences in the temperature of the oil for heating of the evaporator, the temperature variations of the refrigerant, and the mass flows. According to the results of the present study, the circulation rate of the refrigerant increased and the pressure in the evaporator also increased proportionally as the temperature of the oil in the evaporator increased. In addition, the heat transfer rate of the boiler increased as the temperature of the oil in the evaporator increased.

전자 장비 냉각에 있어서의 분리형 써모사이펀의 적용 (The application of separate type thermosyphon for cooling of electronic equipments)

  • 김지훈;박신보;윤정호;김시범;전철호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.725-728
    • /
    • 2002
  • A separate type thermosyphon can be utilized as a cooling device of electronic equipments (such as CPU of a personal computer or notebook). This study was carried out to investigate the cooling effect of separate type thermosyphon and to find the adequate parameters affecting the separate type thermosyphon. The heat transfer characteristics of separate type thermosyphon were obtained from experimental results. A $50{\times}50{\times}2 mm$ heat source was copied after CPU for the experiments. The results indicate that the device is capable of dissipating 60W of thermal energy and keeping the heat plate surface temperature under 50'E and the device can transfer heat from the evaporator to the condenser through natural circulation (without any external driving forces). Some transport phenomena of the working fluid and the heat transfer characteristics of the loop were observed in the experiments and are discussed in detail below.

  • PDF

Instability of a Two-Phase Loop Thermosyphon

  • Rhi, Seok-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제16권7호
    • /
    • pp.1019-1028
    • /
    • 2002
  • The instability of two-phase loop thermosyphons was investigated experimentally and analytically. Three orifice type inserts were used to study the effect of change in the pressure drop in the flow channel of the TLT on the flow instability and temperature fluctuation. It is observed that a decrease in the size of the orifice insert from 3.7 mm (no insert) to 0.71 mm drastically reduced the fluctuation of the temperature, especially at the evaporator section of the TLT. With the orifice type insert of 0.71 mm for the TLT, the overall temperature fluctuation was almost completely eliminated, especially at higher power input to the TLT The analysis based on the Kelvin-Helmholtz instability theory seems to predict reasonable well the loop stability state of the TLT with experimentally determined constant factors.

루프형 2상 유동 열사이폰의 유동 불안정에 관한 실험적 연구 (Experimental Study on Instability of Two-Phase Loop Thermosyphon)

  • 이석호
    • 설비공학논문집
    • /
    • 제14권5호
    • /
    • pp.408-414
    • /
    • 2002
  • The instability of two-phase loop thermosyphons (TLTs) was investigated experimentally. Three orifice type inserts were used to study the effect of change in the pressure drop in the flow channel of the TLT on the flow instability and temperature fluctuation. It is observed that a decrease in the size of the orifice insert from 3.7mm (no insert) to 0.71mm drastically reduced the fluctuation of the temperature, especially at the evaporator section of the TLT With the orifice type insert of 0.71 mm for the TLT, the overall temperature fluctuation was almost completely eliminated, especially at higher power input to the TLT.

태양열을 이용한 상변화 Thermosyphon의 작동특성과 시스템 모델링에 관한 연구 (Study on the operating characteristics and system modelling of loop type thermosyphon for using solar thermal energy)

  • 강명철;이윤준;윤현식;강용혁;윤환기;유창균;이동규
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1999년도 추계 학술발표회 논문집
    • /
    • pp.187-192
    • /
    • 1999
  • 전 세계적으로 무분별한 화석에너지 사용에 따른 환경오염 문제와 에너지원의 고갈로 인하여 태양에너지는 대체에너지원으로 가장 유용한 에너지원이다. 대체에너지원으로의 태양에너지는 다양한 이용분야가 개발되어 실용화되고 있는데 그 중에서 온수급탕을 위한 연구로 자연형 태양열 시스템과 상변화형 시스템이 주류를 이루고 있다. 자연형 시스템의 개발과 실용화로 얻어진 기술을 바탕으로 기후에 적합한 상변화를 이용하는 시스템 개발을 추진하고 있는 실정이다.(중략)

  • PDF

열원 냉각용 루프 써모사이폰의 작동 특성 (Performance Characteristics of a Loop Thermosyphon for Heat Source Cooling)

  • 최두성;송태호
    • 대한기계학회논문집B
    • /
    • 제28권12호
    • /
    • pp.1475-1483
    • /
    • 2004
  • Loop thermosyphon(LTS) has many good characteristics such as low thermal resistance, no power consumption, noiseless operation and small size. To investigate the overall performance of LTS, we have performed various experiments varying three parameters: input power of the heater, working fluid(water, ethanol, FC3283) and filling ratio of the working fluid. At a combination of these parameters, temperature measurements are made at many locations of the LTS. The temperature difference between the evaporator and the condenser is used to obtain the thermal resistance. In addition, flow visualization using a high speed camera is carried out. The thermal resistance is not constant. It is lower at higher input power, which is one of the distinct merits of LTS. Flow instabilities are frequently observed when changing the working fluid, the input power and the filling ratio. The results show that the LTS can be readily put into practical use. Future practical application in electronic cooling is recommended.

루프형 히트파이프 냉각성능에 관한 연구 (Cooling Performance Evaluation of Loop Type Heat Pipe)

  • 김봉환;김경훈
    • 한국분무공학회지
    • /
    • 제7권2호
    • /
    • pp.31-36
    • /
    • 2002
  • According to the improvement of PC performance, it is expected that calorific value, which causes PC to malfunction, is increased. Therefore, the development of new cooling system is recently required. As the method to solve this problem, we applied loop heat pipe to PC cooling system. The advantage of the loop heat pipe is that it has a small size, light weight, simple shape, long life and it has a good performance on heat transfer, no-noise, wide range of applicable temperature and no supply of power from the outside. It is confirmed that loop heat pipe reduces thermal resistance and has a good performance on PC cooling.

  • PDF

Study on Performance Evaluation of Oscillating Heat Pipe Heat Exchanger for Low Temperature Waste Heat Recovery

  • Bui, Ngoc-Hung;Kim, Ju-Won;Jang, In-Seung;Kang, Jeong-Kil;Kim, Jong-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제11권2호
    • /
    • pp.73-81
    • /
    • 2003
  • The performance of heat exchanger using oscillating heat pipe (OHP) for low temperature waste heat recovery was evaluated. OHP used in this study was made from low finned copper tubes connected by many turns to become the closed loop of serpentine structure. The OHP heat exchanger was formed into shell and tube type. R-22 and R-141b were used as the working fluids of OHP with a fill ratio of 40 vol.%. Water was used as the working fluid of shell side. As the experimental parameters, the inlet temperature difference between heating and cooling water and the mass velocity of water were changed. The mass velocity of water was changed from 30 kg/$m^2$s to 92 kg/$m^2$s. The experimental results showed that the heat recovery rate linearly increased as the mass velocity and the inlet temperature difference of water increased. Finally, the performance of OHP heat exchanger was evaluated by $\varepsilon$-NTU method. It was found that the effectiveness would be 80% if NTU were about 1.5.