• 제목/요약/키워드: Loop shaping

검색결과 124건 처리시간 0.021초

혼합감도최소화를 이용한 열간압연 구동기에 대한 $H^{\infty}$ 속도제어 ($H^{\infty}$ Speed Control for Hot Rolling Mill Drives using Mixed Sensitivity Minimization)

  • 김종해;엄태호;박홍배;이상호;정진양;이주강
    • 제어로봇시스템학회논문지
    • /
    • 제4권1호
    • /
    • pp.134-140
    • /
    • 1998
  • 포항제철 2열연공장의 사상압연에 사용되고 있는 DC 모터를 가지는 열간압연 구동기에 대한 견실 H/sup .inf./ 속도제어기 설계방법을 제안한다. 기존에는 PI 재어기법을 이용하여 속도를 제어하고 있으므로 불확실성과 외란등이 존재할 경우 양호한 제어 성능을 얻기 힘들다. 이를 해결하기 위해 주파수 하중 함수를 가지는 혼합감도최소화 문제를 설정하여 견실성을 보장하는 H/sup .inf./ 속도제어기를 설계한다. 이때 주파수 하중함수는 루프쉐이핑기법을 이용하여 주어진 구동기 플랜트에 적합하도록 선택한다. H/sup .inf./ 속도제어기 설계는 Pasek이 제시한 DC 모터의 모델링 방법에 의해 얻어진 모델을 포함하는 구동기 모델에서 속도제어기 부분을 제외한 모델을 대상으로 한다. 제안한 견실 속도제어기 설계방법은 파라미터 변화나 부하토크 변동 등의 외란에 대하여 폐루프 시스템의 견실안정성과 원하는 속도에 좋은 추적 성능을 보인다. 제어 대상인 포항제철 2열연공장의 열간압연 구동기에 대한 시뮬레이션을 통해 기준속도 추적성, 응답속도, 불확실성과 외란에 대한 견실성 등의 성능에 기존의 PI 속도제어기보다 양호함을 확인함으로써 제안한 견실 H/sup .inf./ 속도제어기 설계 방법의 타당성을 보인다.

  • PDF

인공위성 자세제어를 위한 H-infinity 제어기 설계 알고리즘 비교 연구 (Comparison Study of H-infinity Controller Design Algorithms for Spacecraft Attitude Control)

  • 이승우
    • 한국항공우주학회지
    • /
    • 제44권1호
    • /
    • pp.57-69
    • /
    • 2016
  • 폐루프 기준으로 $H_{\infty}$ 제어기를 설계하는 알고리즘에는 3가지(2-ARE, mu-synthesis, LMI) 방법이 있다. 본 논문에서 3가지 $H_{\infty}$ 제어기 설계 알고리즘에 대한 기초 이론을 종합하고, Matlab$^{TM}$에 구현된 함수가 사용될 경우, 실무입장에서 가장 적절하다고 판단되는 $H_{\infty}$ 제어기 설계 알고리즘 제시를 위해 인공위성 자세 제어기 설계 후 결과를 비교 분석하였다: 2-ARE 방법과 LMI 방법은 robust stability, robust performance 및 control authority 측면에서 거의 유사하였으나, LMI 방법에 비해 2-ARE 방법이 weighting 함수설계에 더 민감하였고, mu-synthesis 방법은 다른 2가지 설계 방법에 비해 성능면에서 다소 떨어지고, control authority가 크게 나타났다. 따라서 인공위성 자세제어 설계를 위해 실무 관점에서 LMI 방법이 더 편리한 설계 알고리즘이라는 결론을 얻었다.

Dynamic Control Allocation for Shaping Spacecraft Attitude Control Command

  • Choi, Yoon-Hyuk;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권1호
    • /
    • pp.10-20
    • /
    • 2007
  • For spacecraft attitude control, reaction wheel (RW) steering laws with more than three wheels for three-axis attitude control can be derived by using a control allocation (CA) approach.1-2 The CA technique deals with a problem of distributing a given control demand to available sets of actuators.3-4 There are many references for CA with applications to aerospace systems. For spacecraft, the control torque command for three body-fixed reference frames can be constructed by a combination of multiple wheels, usually four-wheel pyramid sets. Multi-wheel configurations can be exploited to satisfy a body-axis control torque requirement while satisfying objectives such as minimum control energy.1-2 In general, the reaction wheel steering laws determine required torque command for each wheel in the form of matrix pseudo-inverse. In general, the attitude control command is generated in the form of a feedback control. The spacecraft body angular rate measured by gyros is used to estimate angular displacement also.⁵ Combination of the body angular rate and attitude parameters such as quaternion and MRPs(Modified Rodrigues Parameters) is typically used in synthesizing the control command which should be produced by RWs.¹ The attitude sensor signals are usually corrupted by noise; gyros tend to contain errors such as drift and random noise. The attitude determination system can estimate such errors, and provide best true signals for feedback control.⁶ Even if the attitude determination system, for instance, sophisticated algorithm such as the EKF(Extended Kalman Filter) algorithm⁶, can eliminate the errors efficiently, it is quite probable that the control command still contains noise sources. The noise and/or other high frequency components in the control command would cause the wheel speed to change in an undesirable manner. The closed-loop system, governed by the feedback control law, is also directly affected by the noise due to imperfect sensor characteristics. The noise components in the sensor signal should be mitigated so that the control command is isolated from the noise effect. This can be done by adding a filter to the sensor output or preventing rapid change in the control command. Dynamic control allocation(DCA), recently studied by Härkegård, is to distribute the control command in the sense of dynamics⁴: the allocation is made over a certain time interval, not a fixed time instant. The dynamic behavior of the control command is taken into account in the course of distributing the control command. Not only the control command requirement, but also variation of the control command over a sampling interval is included in the performance criterion to be optimized. The result is a control command in the form of a finite difference equation over the given time interval.⁴ It results in a filter dynamics by taking the previous control command into account for the synthesis of current control command. Stability of the proposed dynamic control allocation (CA) approach was proved to ensure the control command is bounded at the steady-state. In this study, we extended the results presented in Ref. 4 by adding a two-step dynamic CA term in deriving the control allocation law. Also, the strict equality constraint, between the virtual and actual control inputs, is relaxed in order to construct control command with a smooth profile. The proposed DCA technique is applied to a spacecraft attitude control problem. The sensor noise and/or irregular signals, which are existent in most of spacecraft attitude sensors, can be handled effectively by the proposed approach.

버니어 지연단을 이용한 26ps, 8비트 게이티드 링 오실레이터 시간-디지털 변환기의 설계 (Design of a 26ps, 8bit Gated-Ring Oscillator Time-to-Digital Converter using Vernier Delay Line)

  • 진현배;박형민;김태호;강진구
    • 대한전자공학회논문지SD
    • /
    • 제48권2호
    • /
    • pp.7-13
    • /
    • 2011
  • 본 논문에서는 디지털 위상고정루프(All-digital PLL)를 구성하는 핵심 블록인 시간-디지털 변환기(Time-to-Digital Converter)를 제안하고 구현하였다. 본 연구에서는 게이티드 링 오실레이터 시간-디지털 변환기(GRO-TDC)의 기본 구조에 버니어 지연단(VDL)을 이용하여 다중 위상을 얻음으로써 보다 높은 해상도를 얻을 수 있는 구조를 제안하였다. 게이티드 링 오실레이터(GRO)는 총 7개의 지연셀을 사용하였고, 버니어 지연단(VDL) 3단을 이용하여 총 21개의 다중 위상을 사용하여 시간-디지털 변환기(TDC)를 설계하였다. 제안한 회로는 $0.13{\mu}m$ 1P-6M CMOS 공정을 사용하여 설계 및 구현하였다. 측정결과, 제안한 시간-디지털 변환기(TDC)의 최대 입력 주파수는 100MHz이고, 해상도는 26ps로 측정되었으며, 출력은 8-비트이며, 검출이 가능한 최대 위상 차이는 5ns의 위상 차이까지 검출이 가능하였다. 전력 소비는 측정된 Enable 신호의 크기에 따라 최소 8.4mW에서 최대 12.7mW로 측정되었다.