• Title/Summary/Keyword: Loop sensor

Search Result 453, Processing Time 0.023 seconds

Implementation of automatic mode for remote impact wrench task (로보트를 이용한 원격조작 임팩트렌치 작업의 자동수행 기능부 구현)

  • 박영수;박병석;이재설
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.832-837
    • /
    • 1991
  • After many years of proliferation, the nuclear industry is indebted for a formidable consequence, the safe management of spent fuel. Naturally, the high radioactivity involved with such process motivates the development of effective telerobotic systems. Nevertheless, the existing master-slave type of tele manipulators are limited in effectiveness by the human operator's limited sensory and manipulation capabilities. This paper presents the result of a research effort to resolve such problems by assigning the slave manipulator a certain degree of intelligence; sensing and actuation. In the presented system, a perception-action loop is achieved using ultrasonic range sensor and laser distance sensor interfaced with the PUMA 760 industrial robot system, and applied to automating impact wrenching task for unbolting the lid of nuclear spent fuel cask. The perception-action loop performs determination of the cask location, collision avoidance and centering of the impact wrench onto the bolt head. To aid the insertion task and to provide versatility a mounting module consisting of an RCC device and an automatic tool changer is designed and implemented. The performance of the developed system is tested on the model cask and the result is given.

  • PDF

Control Characteristics of a Load Commutated CSI-Induction Motor System (부하전류식 전류형인버터-유도전동기 시스템의 제어 특성)

  • 송중호;윤태웅;김권호;김광배
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.10
    • /
    • pp.1029-1036
    • /
    • 1990
  • This paper presents a systematic study for control loops in the induction motor drive system employing a load commutated current source inverter (LCCSI) which has appeared since the early 1980's, and their effects on the dynamic stability of the system. A set of dq equations which amalgamate the overall system is developed, and from the equations it is revealed that the steady state characteristics of the LCCSI-induction motor system are between VSI and ASCI. When the speed control loop is constructed without a speed sensor, the evaluation of the pole/zero locations and the assessment of the stability for the added loops are investigated. We also show that the V/F loop is essential in this type of drive without the speed sensor.

  • PDF

Design of Reliable Control System Guaranteeing $H_{\inf}-norm$ Peformance Bound for Uncertain Linear System (불확정성 선형시스템에 대한 $H_{\inf}$ 노옴 성능 경계를 만족하는 신뢰성 제어시스템의 설계)

  • ;Zeungnam Bien
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.8
    • /
    • pp.1-14
    • /
    • 1996
  • Design of a reliable control systems is investigated for a class of uncertain linear plants. The uncertainty considered here is for the ase of uncertainty in the system matrix. A decentralized control scheme with two observer-based feedback controllers is developed, and it is shown that the resulting closed-loop system is reliable in the sense that the control scheme provides guaranteed stability and $H_{\infty}$-norm bounded performance in the event of sensor and/or actuator failures as well as in the presence of parameter uncertainties. We observed that soft-type failures were additional exogenous inputs to the closed-loop system. As a results, the sensor and/or actuator failures can be tolerated in the design, which is achieved by extending the methodology developed in.

  • PDF

Fuzzy Methods for the design of Digital Controllers with Intelligent Calibration (지능형 자동 보정화 디지털 제어기 설계를 위한 퍼지 기법)

  • 나승유;박민상
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.187-190
    • /
    • 1998
  • The values of physical components of the plants and controllers as well as the relevant environmental conditions change in time, thus the output performance can be deteriorated during the operating span of the system. Naturally the duty of calibration or the prevention of performance deterioration due to excessive component sensitivity should be provided to the control system. The proposed controller, whenever necessary, measures the open-loop and close-loop characteristics, and then calculates the offset and sensor gain correction values based on the prepared standard measurements It is applied to the control of a flexible link system with the gain and offset calibration problems in the light sensor module for position to show the applicability. In this paper, we propose a digital controller which has the capability of calibration gain and offset adjustment using fuzzy methods.

  • PDF

A Study on Closed-Loop Control of a Stepping Motor for Resonance Elimination (공진배제를 위한 스템핑 모터의 폐회로제어에 관한 연구)

  • 노상현;김교형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.90-97
    • /
    • 1991
  • A stepping motor can be driven with open-loop or closed-loop control. The major disadvantage of open-loop control is that it is subjected to resonance and instability in certain speed range, and that there is no way to check stalling or error in position. In this paper, a closed-loop control system consisting of a microcomputer, a hybrid stepping motor, a drive, a lead screw, and an encoder which is used as a position sensor is developed. A control program is programmed in assembly language for real time control and the versatile interface adapter(VIA) is used as the interface with the microcomputer. The experimental results of the stepping motor were eliminated on all kinds of inertia load, and maximum start stop pulse rate and maximum slewing pulse rate were also increased about twice respectively.

A digital closed-loop processor with a stabilizer for an open-loop fiber-optic gyroscope (개회로 FOG용 폐회로 신호처리기의 안정화)

  • 김도익;예윤해
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.5
    • /
    • pp.377-383
    • /
    • 2002
  • An all-digital closed-loop (ADCL) signal processor for an open-loop FOG was developed to replace the analog circuitry of a Digital Phase Tracking (DPT) signal processor with new digital circuitry. When the ADCL signal processor without a stabilizer for fiber phase modulator (FPM) was attached to the FOG, temperature drift of FOG was about 0.26$\mu$rad/$^{\circ}C$, which makes the FOG unusable in medium or higher-grade applications. This drift was due to variations of phase modulation amplitude and phase delay of the FPM. The stabilizer controls its phase modulation amplitude and phase delay by regulating the ratio of harmonics of the FOG output. Thus, the stabilizer reduces the drift of the FOG to negligible.

Study on Applicability of the Vehicle Detection Using a Coil Sensor (코일센서를 이용한 차량검지기 적용성에 대한 연구)

  • Lee, Sang-O;Lee, Choul-Ki;Yun, Ilsoo;Kim, Nam-Sun;Lee, Yong-Ju
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.2
    • /
    • pp.14-23
    • /
    • 2015
  • This study was intended to evaluate the feasibility of the vehicle detector using a coil sensor. For the evaluation, the research team built a test environment for the detector consisting of a oscillation circuit, data collecting circuit, data monitoring and saving circuit, etc. As the result of the frequency analysis of the detector from the test environment, it was verified for the detector using a coil sensor to generate stable frequencies. In addition, the ease of construction and management was tested by comparing the size of cutting areas, consumption of installation materials, and installation time for a traditional loop detector and the detector using a coil sensor. As a result, the installation of the detector using a coil sensor requires less size of cutting areas, consumption of installation materials, and installation time.

A Methodology for Estimating Section Travel Times Using Individual Vehicle Features (개별차량의 고유특성을 이용한 구간통행시간 산출기법 개발)

  • O, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.1
    • /
    • pp.83-92
    • /
    • 2005
  • This study if the first trial toward realizing a new methodology for vehicle re-identification based on heterogeneous sensor systems. A major interest of the author is how to effectively utilize information obtained from different sensors to derive accurate and reliable section travel times. The 'blade' sensor that is a newly developed sensor for capturing vehicle wheel information and the existing square loop sensor are employed to extract the inputs of the proposed vehicle re-identification algorithm. The fundamental idea of the algorithm developed in this study, which is so called 'anonumous vehicle re-identification,' it to match vehicle features obtained from both sensors. The results of the algorithm evaluation reveal that the proposed methodology could be successfully implemented in the field. The proposed methodology would be an invaluable tool for operating agencies in support of traffic monitoring systems and traveler information systems.

A Study on Sensor Modeling for Virtual Testing of ADS Based on MIL Simulation (MIL 시뮬레이션 기반 ADS 기능 검증을 위한 환경 센서 모델링에 관한 연구)

  • Shin, Seong-Geun;Baek, Yun-Seok;Park, Jong-Ki;Lee, Hyuck-Kee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.331-345
    • /
    • 2021
  • Virtual testing is considered a major requirement for the safety verification of autonomous driving functions. For virtual testing, both the autonomous vehicle and the driving environment should be modeled appropriately. In particular, a realistic modeling of the perception sensor system such as the one having a camera and radar is important. However, research on modeling to consistently generate realistic perception results is lacking. Therefore, this paper presents a sensor modeling method to provide realistic object detection results in a MILS (Model in the Loop Simulation) environment. First, the key parameters for modeling are defined, and the object detection characteristics of actual cameras and radar sensors are analyzed. Then, the detection characteristics of a sensor modeled in a simulation environment, based on the analysis results, are validated through a correlation coefficient analysis that considers an actual sensor.

Magnetic Resistance Angle Sensor Ripple Elimination Method Using Phase Locked Loop (위상동기루프를 이용한 자기저항 각도 센서의 맥동 제거 방법)

  • Lee, Jeonghun;Kim, Sungjin;Nam, Kwanghee
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.523-524
    • /
    • 2016
  • 본 논문에서는 자기저항 (Magnetic Resistive, MR)각도 센서에서 자속 간섭 및 축 진동과 같은 외란에 의해 발생하는 각도맥동을 해결하는 방법이 연구되었다. 외란에 의한 각도 맥동은 일정한 기계각 속도 한 주기 내에서 전기각 속도가 불균일하게 측정되는 현상이다. 이를 해결하기 위해 위상동기루프 (phase locked loop, PLL)를 적용하였고, 자기저항 각도 센서의 각도 맥동을 효과적으로 제거하였다.

  • PDF