• Title/Summary/Keyword: Loop sensor

Search Result 453, Processing Time 0.024 seconds

Performance analysis of feedback controller for vibratory gyroscope at various vacuum levels

  • Sung, Woon-Tahk;Lee, Jang-Gyu;Kang, Tae-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1537-1541
    • /
    • 2003
  • In this paper, presented is a feedback control performance of vibratory gyroscope at various vacuum levels. Micro gyroscope, whose operation is based on the vibrating motion at the vacuum conditions, is highly influenced by the vacuum level of the operating circumstances. In general, we apply the feedback control scheme to the gyroscope in order to improve the performances of the sensor. And control performances of the gyroscope are related to those vacuum levels. So we need investigate the performances of the closed loop control at various vacuum conditions comparing with those of the open loop. The experimental results show that the sensitivity of the closed loop is less than that of the open loop especially in low vacuum conditions. Therefore, there should be trade-off between sensitivity and other sensor performances such as linearity, bandwidth when we apply feedback control to the gyroscope.

  • PDF

Design of Collecting System for Traffic Information using Loop Detector and Piezzo Sensor (루프검지기와 피에조 센서를 이용한 교통정보 수집시스템 설계)

  • Yang, Seung-Hun;Han, Kyong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2956-2958
    • /
    • 2000
  • This paper describes the design of a real time traffic data acquisition system using loop detector and piezzo sensor. Loop detector is the cheapest method to measure the speed and piezzo is used to detect the vehicle axle information. A ISA slot based I/O board is designed for data acquisition and PC process the raw traffic data and transfer the data to the host system. Simulation kit is designed with toy car kits. simulated loop detector and piezzo sensor. The data acquisition system collects up to 10 lane highway traffic data such as vehicle count. speed. length axle count. distance between the axles. The data is processed to generate traffic count, vehicle classification, which are to be used for ITS. The system architecture and simulation data is included and the system will be tested for field operation.

  • PDF

Development of Optical Fiber Hydrogen Sensor Based on Polarization-Diversity Loop Configuration Using Pd-Coated Polarization-Maintaining Fiber (팔라듐 코팅된 편광 유지 광섬유를 이용한 편광 상이 배치 구조 기반 광섬유 수소 센서의 개발)

  • Noh, Tae-Kyu;Kim, Young-Ho;Lee, Yong-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.1-6
    • /
    • 2013
  • In this study, we propose a fiber-optic hydrogen sensor using a polarization-diversity loop configuration composed of a polarization beam splitter, two quarter-wave plates, and a polarization-maintaining fiber coated with palladium whose thickness is ~400nm. One transmission dip of the output interference spectrum of the proposed sensor, chosen as a sensor indicator, was observed to spectrally shift with the increase of the hydrogen concentration, and the sensing indicator showed a wavelength shift of ~2.48nm at a hydrogen concentration of 4%. Except for a hydrogen concentration of 4%, the response time of the proposed sensor was measured as less than 12.5s and did not show significant dependence on the hydrogen concentration. In particular, the proposed fiber hydrogen sensor is more durable and highly resistant to external stress applied on a transverse axis of an optical fiber, compared with other hydrogen sensors based on side-polished fibers or fiber gratings.

A Basic Study on the Measurement Induced Voltages due to Lightning Discharges (뇌방전에 의한 유도전압의 측정에 대한 기초적 연구)

  • Lee, Bok-Hee;Cho, Sung-Chul;Eom, Ju-Hong;Lee, Woo-Chul
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.559-564
    • /
    • 2004
  • This paper deals with the device for measuring the time-varying magnetic fields and induced voltages caused by lightning discharges. The two magnetic field measuring systems were designed and made. One consists of the loop-type magnetic field sensor with the active integrator operated by a differential amplifier. The other consists of the loop-type magnetic field sensor and Labview software. The loop-type magnetic field sensor detects the time derivative of the magnetic field being measured, and the signal detected is integrated by the Labview software. As a consequence, from the calibration experiments, the frequency bandwidth of the full measuring system ranges from 400 [Hz] to 1 (MHz) and the response sensitivity are 0.98 (mV/nT) and 22 (mV/nT) for the magnetic field sensor of 2 turns and 6 turns, respectively. Also, the results obtained by the two measuring devices well agreed with each other.

  • PDF

A Clock System including Low-power Burst Clock-data Recovery Circuit for Sensor Utility Network (Sensor Utility Network를 위한 저전력 Burst 클록-데이터 복원 회로를 포함한 클록 시스템)

  • Song, Changmin;Seo, Jae-Hoon;Jang, Young-Chan
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.858-864
    • /
    • 2019
  • A clock system is proposed to eliminate data loss due to frequency difference between sensor nodes in a sensor utility network. The proposed clock system for each sensor node consists of a bust clock-data recovery (CDR) circuit, a digital phase-locked loop outputting a 32-phase clock, and a digital frequency synthesizer using a programmable open-loop fractional divider. A CMOS oscillator using an active inductor is used instead of a burst CDR circuit for the first sensor node. The proposed clock system is designed by using a 65 nm CMOS process with a 1.2 V supply voltage. When the frequency error between the sensor nodes is 1%, the proposed burst CDR has a time jitter of only 4.95 ns with a frequency multiplied by 64 for a data rate of 5 Mbps as the reference clock. Furthermore, the frequency change of the designed digital frequency synthesizer is performed within one period of the output clock in the frequency range of 100 kHz to 320 MHz.

Performance Comparison of Sensor-Programming Schemes According to the Shapes of Obstacles

  • Chung, Jong-In;Chae, Yi-Geun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.56-62
    • /
    • 2021
  • MSRDS(Microsoft Robotics Developer Studio) provides the ability to simulate these technologies. SPL(Simple Programming Language) of MSRDS provides many functions for sensor programming to control autonomous robots. Sensor programming in SPL can be implemented in two types of schemes: procedure sensor notification and while-loop schemes. We considered the three programming schemes to control the robot movement after studying the advantages and disadvantages of the sensor notification procedure and the while-loop scheme. We also created simulation environments to evaluate the performance of the three considered schemes when applied to four different mazes. The simulation environment consisted of a maze and a robot with the most powerful sensor, i.e., the LRF(Laser Range Finder) sensor. We measured the required travel time and robot actions (number of turns and number of collisions) needed to escape the maze and compared the performance outcomes of the three considered schemes in the four different mazes.

Adaptive Duty Cycling MAC Protocols Using Closed-Loop Control for Wireless Sensor Networks

  • Kim, Jae-Hyun;Kim, Seog-Gyu;Lee, Jai-Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.105-122
    • /
    • 2011
  • The fundamental design goal of wireless sensor MAC protocols is to minimize unnecessary power consumption of the sensor nodes, because of its stringent resource constraints and ultra-power limitation. In existing MAC protocols in wireless sensor networks (WSNs), duty cycling, in which each node periodically cycles between the active and sleep states, has been introduced to reduce unnecessary energy consumption. Existing MAC schemes, however, use a fixed duty cycling regardless of multi-hop communication and traffic fluctuations. On the other hand, there is a tradeoff between energy efficiency and delay caused by duty cycling mechanism in multi-hop communication and existing MAC approaches only tend to improve energy efficiency with sacrificing data delivery delay. In this paper, we propose two different MAC schemes (ADS-MAC and ELA-MAC) using closed-loop control in order to achieve both energy savings and minimal delay in wireless sensor networks. The two proposed MAC schemes, which are synchronous and asynchronous approaches, respectively, utilize an adaptive timer and a successive preload frame with closed-loop control for adaptive duty cycling. As a result, the analysis and the simulation results show that our schemes outperform existing schemes in terms of energy efficiency and delivery delay.

The Design of the Amplitude and Phase Control Circuit for the Error Sensor Loop in Feedforward Linearizer System (Feedforward 선형화기 시스템의 오차 추출 루프를 위한 크기와 위상 제어 회로의 설계)

  • Nam, Sang-Dae;Park, Ung-Hui;Jang, Ik-Su;Yun, Sang-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.2
    • /
    • pp.91-97
    • /
    • 2000
  • Tn this paper, a novel control circuit applicable to the error sensor loop block in the feedforward linearizer system is proposed. The proposed control circuit is applied to the error sensor loop block, where in the 11dB power range, it operates stably, and makes main carrier signals to be eliminated more than 40dB below 3$\^$rd/ order IM level. In the operating point, the amplitude control error is 0.05∼0.12dB, and the phase control error is smaller than 0.02。. It is verified theoretically as well as experimentally that the control circuit can precisely compensate the variation of nonlinear characteristics in a high power amplifier, due to the variations of input power, operating temperature, humidity and the other system environments.

  • PDF

Demodulation of FBG and Acoustic Sensors Embedded in a Fiber-Optic Sagnac Loop (광섬유 사낙간섭계에 삽입된 광섬유격자센서와 음향센서의 복조)

  • Kim, Hyun-Jin;Lee, June-Ho;Song, Min-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.2
    • /
    • pp.44-50
    • /
    • 2012
  • When the fiber Bragg gratings are embedded in a fiber-optic Sagnac loop for measuring temperature or strain, it is difficult to separate the Bragg wavelengths. The transmitted light is mixed with the reflected Bragg wavelengths in the photo-detector, working as noises. To suppress the noises, we placed the FBG sensors and a fiber-optic attenuator at asymmetric positions in the loop. With the arrangement the reflected light became much bigger than the transmitted light, enabling the separation of the reflected Bragg wavelengths with almost the same signal-to-noise ratio of the FBG sensors outside the loop.

A Stator Flux Oriented V/f Control of Induction Motor in Low Speed Range

  • Kim Young-Real
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.466-469
    • /
    • 2001
  • In this paper, closed loop V/f control of induction motor has been implemented by the estimated speed. Closed loop V/f control improve the performance of induction motor drive system at low speed compared to open loop V/f control. However, closed loop V/f control need speed sensor. By using the estimated speed, closed loop V/f control is possible without speed sensor. Rotor speed is calculated from the difference between synchronous frequency and slip angular frequency. 3-phase voltage reference is obtained from synchronous frequency. And the PWM technique using space vector PWM is applied in this scheme. In the space vector PWM, effective time of 3-phase voltage reference is used to simplify the calculation of effective voltage time. This scheme is simple to implement and one chip microprocessor was used in experimental system.

  • PDF