• Title/Summary/Keyword: Longitudinal ultrasonic

Search Result 175, Processing Time 0.028 seconds

Study of Acoustic Streaming at Resonance by Longitudinal Ultrasonic Vibration Using Particle Imaging Velocimetry (입자 영상 유속계를 이용한 초음파 수직진동에 의해 유도된 공진상태에서의 음향유동에 관한 연구)

  • 노병국;이동렬
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.340-352
    • /
    • 2004
  • Acoustic streaming induced by the microscopic longitudinal ultrasonic vibration at 28.5 ㎑ is visualized between the quiescent glass plate and ultrasonic vibrator by particle imaging velocimetry(PIV) using laser. To investigate the augmentation of air flow velocity of acoustic streaming. the velocity variations of air streaming between the stationary plate and ultrasonic vibrator are measured in real-time. It is experimentally investigated that the magnitude of the acoustic streaming dependent upon the gap between the ultrasonic vibrator and stationary p1ate results in the variations of the average velocity fields as a outcome of the bulk air flow caused by the ultrasonic vibration. In addition. maximum acoustic streaming velocity exists at resonant gap. 18mm that is one of the resonant gaps (H=18, 24, 30, 36㎜) at which resonance occurs. The variation of the local maximum turbulent intensity with axial direction appear to reveal the value of 8%∼70% dependent upon the gap between the quiescent glass plate and ultrasonic vibrator. Shearstress is also maximized at the center region of the vibrator and the vorticity is also maximum and minimum in the neighborhood of the center of the vibrator at which the local maximum turbulent intensity and shear stress exist.

Effect of Acetylation on Ultrasonic Velocity of Bamboo (아세틸화 처리가 대나무재의 초음파 전달 속도에 미치는 영향)

  • Kang, Ho-Yang;Lee, Gwan-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.8-15
    • /
    • 1997
  • The ultrasonic velocity and dynamic MOE of acetylated bamboos were investigated using PUNDIT, a transit time measuring device for longitudinal ultrasonic propagation. Bamboo specimens were boiled in acetic anhydride for 2, 4 and 6 hours, and the maximum average WPG (Weight Percentage Gain) of 19% was obtained at 6 hours. The volumes of acetylated bamboos increase with boiling time and WPG, while as WPG increases their oven-dry densities generally increase with a concave around 5% WPG. This oven-dry density pattern likely influences the trends of ultrasonic velocity and dynamic MOE. which generally decrease with a convex around 5% WPG. It is postulated that during boiling extractives in a bamboo move and aggregate at its surfaces transiently, resulting in the increase of ultrasonic velocity and dynamic MOE. To explain the fact that ultrasonic velocity varies with WPG a simple model was proposed and some ultrasonic properties of a transmitted wave were examined.

  • PDF

Piezoelectric ultrasonic linear motor by traveling wave (Traveling wave를 이용한 압전 선형 초음파 모터)

  • Yoon, Jang-Ho;Lee, Won-Hee;Choi, Woo-Chun;Kang, Chong-Yun;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.192-192
    • /
    • 2008
  • This paper represents a piezoelectric ultrasonic linear motor by traveling wave. The motor which is composed of two piezo ceramics, elastic body, and connecting tip is driven by the frictional force between the connecting tip and the linear motion guide. longitudinal and flexural vibrations are made by traveling wave which is generated when the ultrasonic electrical signals with 90 degree phase difference are applied to two ceramics. These vibrations contribute to elliptical motion by mixed mode between longitudinal and transverse mode. A linear movement can be easily obtained by using the elliptical motion. In this paper, the piezoelectric actuator has been intensively simulated by using ATILA to achieve an optimized elliptical motion of it. We could get the elliptical motion from actual experiment through the simulated result.

  • PDF

Trajectory of Elliptical Displacement of L1-B4 Type Linear Ultrasonic Motor using Multilayer Piezoelectric Actuator (적층형 압전 액츄에이터를 이용한 L1-B4형 선형 초음파 리니어 모터의 타원변위궤적)

  • Lee, Kab-Soo;Yoo, Ju-Hyun;Hwang, Eun-Sang;Park, Durk-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.49-52
    • /
    • 2008
  • In this study, multilayer structured ultrasonic linear motor was simulated using Atila for investigating its optimum driving conditions. The ultrasonic linear motors mainly consist of an ultrasonic vibrator to generate elliptical displacement. The ultrasonic linear motor simulated in this paper was the use of the 1st longitudinal(Ll) and 4th bending vibrations (B4). Whit the increase of the number of piezoelectric actuator layers, displacement of node was increased. Maximum total displacement of node was about $3,91{\mu}m$ at the 13 layered ultrasonic motor under 5 V.

Poisson's Ratio Measurement Using a Pair of PVDF Ultrasonic Transducer

  • Vargas, Enrique;Toral, Sergio;Gonzalez, Vicente
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.519-524
    • /
    • 2009
  • This work presents a simple technique to determine the Poisson's ratio of homogeneous solid material using a pair of low cost PVDF ultrasonic transducers. It is based on transducer's property of generating longitudinal and transversal waves depending on the excitation frequency. Mechanical tests were conducted to validate the proposed method, resulting in a good agreement between ultrasonic and mechanical techniques.

Design and Displacement Analysis by ANSYS of Ultrasonic Linear Motor (초음파 리니어 모터의 설계와 ANSYS에 의한 변위량해석)

  • 김태열;강도원;김범진;박태곤;김명호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.300-302
    • /
    • 1999
  • The standing waves of the fourth bending mode of vibration and first longitudinal mode of vibrator were utilized to construct a ultrasonic linear motor. The geometrical dimensions of the vibrator were determined by Euler-Bernoulli theoty. FEM(finite element method) employed to calculate the vibration mode of the metal-piezoceramic composite thin plate vibrator. ANSYS was used to design positions of the projections and calculate displacement of vibrator.

  • PDF

Characteristics of Linear Ultrasonic Motor Using $L_1-B_4$ Mode Unimorph-TyPe and Bimorph-Type Vibrator ($L_1-B_4$ 모드 유니몰프형과 바이몰프형 진동자를 이용한 선형 초음파 모터의 특성)

  • Kim, Beom-Jin;Jeong, Dong-Seok;Kim, Tae-Yeol;Park, Tae-Gon;Kim, Myeong-Ho;Uchino, Kenji
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.9
    • /
    • pp.427-433
    • /
    • 2001
  • A linear ultrasonic motor was designed by a combination of the first longitudinal and fourth bending mode, and the motor consisted of a straight aluminum alloys bar bonded with a piezoelectric ceramic element as a driving element. That is,$L_1-B_4$ linear ultrasonic motor can be constructed by a multi-mode vibrator of longitudinal and bending modes. Linear ultrasonic motors are based on an elliptical motion on the surface elastic body, such as bar or plates. In general, the natural resonance frequency of the stator is used as a driving frequency of the motor which provides a large elliptical motion. The corresponding eigenmode of one resonance frequency can be excited twice at the same time with a Phase shift of 90 degrees in space and time. And the rotation can be reversed by changing the phase between the two signals from sin$\omega$t to cos$\omega$t. Moreover, the tangential force pushes the slider(rotor) and, therefore, determines the thrust and speed of the motor. The experimental results of fabrication motors, bimorph-tyPe motor showed more excellent than unimorph-type. The maximum speed of TBL-200, TBL-300, TBL-400, TBL -220, TBL-310 and TBL-420 motors were 0.12, 0.37, 0.39, 0.14, 0.55 and $0.60ms6{-1}$, respectively. And the efficiency were reported 1.15, 7.9, 6.6, 2.36, 10.1 and 16.5%, respectively. That time, output thrust of the motor was a strong(1~2N) and the weight of stator was a lightness(5~7g).

  • PDF

Measurement of Longitudinal and Transverse Wave Speed in Solid Materials Using Immersion Ultrasonic Testing (수침 초음파 시험법을 이용한 고체의 종파와 횡파 속도의 측정)

  • Shin, Yo-Sub;Yoon, Yeo-Ho;Kim, Young-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.1
    • /
    • pp.40-45
    • /
    • 2008
  • Immersion ultrasonic testing (UT) was used to determine elastic moduli of solid materials instead of the widely-used contact UT method. Conventionally, immersion UT is only used for determining the longitudinal wave speed. However, in this research, transverse wave speed was measured through finding transverse wave echoes caused by mode-conversion at material's boundary. Also, even in the cases when wave speeds could not be determined due to unknown thickness, Poisson's ratio was able to be calculated from the ratio of longitudinal and transverse wave speeds. This technique was verified for several materials, and it was found that higher accuracy was obtained by immersion UT method for materials either with relatively high wave speed or with relatively small Poisson's ratio. This technique thus will be suitable fur ceramics or high strength materials.

Development of Ultrasonic Sensors for Simultaneous Measurement of Longitudinal and Shear Waves (종-횡파 동시 측정용 초음파 센서의 개발)

  • Kim, Yeon-Bo;Rho, Yong-Rae
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • A study has been made on the fabrication of a dual mode(a longitudinal and shear mode) ultrasonic sensor using a single PZT piezoelectric ceramic element. We investigated the mechanism of the dual mode sensor that generated both of the longitudinal and the shear waves simultaneously with the single PZT element. Through the analysis of analytic wave propagation equations, all the possible crystal cuts have been examined to determine appropriate Euler transformation angles for efficient excitations of the dual modes. We studied the performance of a PZT element as a function of its rotation angle so that its efficiency is optimized to excite the two waves of equal strength. Experimental examination of the waveform on a delay line(STS303) setup confirms that the ultrasonic sensor can transmit and detect both longitudinal and shear waves simultaneously.

  • PDF