• Title/Summary/Keyword: Longitudinal stress

Search Result 679, Processing Time 0.028 seconds

Shear strength of steel fiber reinforced concrete beams with stirrups

  • Campione, G.;La Mendola, L.;Papia, M.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.107-136
    • /
    • 2006
  • The present paper proposes a semi-empirical analytical expression that is capable of determining the shear strength of reinforced concrete beams with longitudinal bars, in the presence of reinforcing fibers and transverse stirrups. The expression is based on an evaluation of the strength contribution of beam and arch actions and it makes it possible to take their interaction with the fibers into account. For the strength contribution of stirrups, the effective stress reached at beam failure was considered by introducing an effectiveness function. This function shows the share of beam action strength contribution on the global strength of the beam calculated including the effect of fibers. The expression is calibrated on the basis of experimental data available in literature referring to fibrous reinforced concrete beams with steel fibers and recently obtained by the authors. It can also include the following variables in the strength previsions: - geometrical ratio of longitudinal bars in tension; - shear span to depth ratio; - strength of materials and fiber characteristics; - size effects. Finally, some of the more recent analytical expressions that are capable of predicting the shear strength of fibrous concrete beams, also in the presence of stirrups, are mentioned and a comparison is made with experimental data and with the results obtained by the authors.

Prestressed concrete beams under torsion-extension of the VATM and evaluation of constitutive relationships

  • Bernardo, Luis F.A.;Andrade, Jorge M.A.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.577-592
    • /
    • 2017
  • A computing procedure is presented to predict the ultimate behavior of prestressed beams under torsion. This computing procedure is based on an extension of the Variable Angle Truss-Model (VATM) to cover both longitudinal and transversal prestressed beams. Several constitutive relationships are tested to model the behavior of the concrete in compression in the struts and the behavior of the reinforcement in tension (both ordinary and prestress). The theoretical predictions of the maximum torque and corresponding twist are compared with some results from reported tests and with the predictions obtained from some codes of practice. One of the tested combinations of the relationships for the materials was found to give simultaneously the best predictions for the resistance torque and the corresponding twist of prestressed beams under torsion. When compared with the predictions from some codes of practice, the theoretical model which incorporates the referred combination of the relationships provides best values for the torsional strength and leads to more optimized designs.

The Development of Design Formulas for Pipe Loops Used in Large Vessels(II) (대형 선박의 파이프 루프 설계식 개발(II))

  • Park, Chi-Mo;Yang, Park-Dal-Chi;Lee, Jong-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.158-163
    • /
    • 2009
  • Many longitudinal pipes in ships are subject to considerable loads, caused by hull girder bending in the ships and/or thermal loads in some special pipes through which fluids with highly abnormal temperatures are conveyed. As these loads may cause failure in the pipes or their supporting structures, loops have been widely adopted to prevent such failure, based on the idea that they can lower the stress level in a pipe byabsorbing some portion of these loads. But as the loops also have some negative effects, such as causing extra manufacturing cost, deteriorating the function of the pipe, and occupying extra space, the number and dimensions of these loops need to be minimized. This research developed design formulas for pipe loops, modeling them as a spring element, for which the axial stiffness is calculated based on the beam theory, incorporating the flexibility effect of the straight portion of the pipe. The accuracy of the proposed design formulas was verified by comparing two results obtained from the proposed formulas and MSC/NASTRAN. This paper concludes with a sample application of the proposed formulas, showing their efficiency.

Theoretical explanation of rock splitting based on the micromechanical method

  • Huang, Houxu;Li, Jie;Hao, Yiqing;Dong, Xin
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.225-231
    • /
    • 2018
  • In this paper, in order to explain the splitting of cylindrical rock specimen under uniaxial loading, cracks in cylindrical rock specimen are divided into two kinds, the longitudinal crack and the slanting crack. Mechanical behavior of the rock is described by elastic-brittle-plastic model and splitting is assumed to suddenly occur when the uniaxial compressive strength is reached. Expression of the stresses induced by the longitudinal crack in direction perpendicular to the major axis of the crack is deduced by using the Maxwell model. Results show that the induced stress is tensile and can be greater than the tensile strength even before the uniaxial compressive strength is reached. By using the Inglis's formula and simplifying the cracks as slender ellipse, the above conclusions that drawn by using the Maxwell model are confirmed. Compared to shearing fracture, energy consumption of splitting seems to be less, and splitting is most likely to occur when the uniaxial loading is great and quick. Besides, explaining the rock core disking occurred under the fast axial unloading by using the Maxwell model may be helpful for understanding that rock core disking is fundamentally a tensile failure phenomenon.

Behavior of the ground in rectangularly crossed area due to tunnel excavation under the existing tunnel (I) (기존터널에 근접한 직각교차 하부터널의 굴착에 따른 교차부지반의 거동 (I))

  • Kim, Dong-Gab;Kim, Seung-Hyun;Hong, Suk-Bong;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.1
    • /
    • pp.3-12
    • /
    • 2005
  • The behaviors of the ground in crossed zone and the existing upper tunnel in shallow cover due to the excavation of new lower tunnel Rectangularly crossed to that was studied. Model tests were performed in the large scale test pit, the size was '$4.0m(width){\times}3.8m(height){\times}4.1m(length)$'. Test ground was constructed uniformly by sand in middle density. Results of the model tests show that earth pressure and settlement of the ground in crossed zone were redistributed due to the longitudinal arching effect by the excavation of lower tunnel. Upper tunnel blocks stress flow due to the longitudinal arching effect by excavation of lower tunnel.

  • PDF

Viscoelastic Property Evaluation of Asphalt Cement by Ultrasonic Measurement (초음파 측정법에 의한 아스팔트 세멘트의 점탄성 특성 평가)

  • Lee, Jai-Hak
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.5
    • /
    • pp.402-411
    • /
    • 2000
  • This study investigates the method to measure the viscoelastic properties of asphalt cement, one of the viscoelastic materials, using the ultrasound. The wave speed and attenuation were measured from $-20^{\circ}C$ to $60^{\circ}C$ at the frequency of 2.25MHz. Then, the storage and loss longitudinal moduli, loss tangent storage and loss longitudinal compliances were found depending on the temperatures based on the linear viscoelastic theory. Stress relaxation, creep, and viscosity were predicted using Maxwell and Voigt-Kelvin viscoelastic models. The validity of superposition principle and shift factor were verified by comparing the present results to the data reported in the literatures.

  • PDF

Design and Construction Method Considering Turnout for High-speed on The Bridge with Concrete Track (콘크리트궤도에 고속분기기 설치를 고려한 교량설계 및 시공기법)

  • Kim, In-Jae;Oh, Sei-Young;Joo, Hwan-Joong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.71-79
    • /
    • 2008
  • The concrete track is being used at the Phase II of the Kyeongbu High Speed Railway and New Constructed Honam High Speed Railway. When it makes a decision of bridge type, It has to consider about longitudinal forces of Continuous Welded Rail, Displacement at the end of bridges, Up-lift forces for fastener on the track. If it is installed turnout on the bridge, There is likelihood of the deck twist by applying the each difference longitudinal forces at the 4 each rails and the buckling by concentration of rail stress at the turnout. Moreover, If it is installed turnout on the continuous bridge and REJ(Rail Expansion Joint) on the main track or turnout track. It is hard to keep a safety for rail because of coming to twist or folding at the expansion of deck on the turnout track. Therefore when it is a design of bridge with turnout. It need to take bridge type to minimize an additional axial force and a displacement at the turnout. This paper makes a study of the composite steel arch bridge that is able to resolve criteria requirements of safety for track with turnout and suggest a helpful design method for bridge considering track with turnout by being based on design and construction method of Eonyang Bridge at the north part of Ulsan Station in Phase II of the Kyeongbu High Speed Railway.

  • PDF

Is the Arch Index Meaningful

  • Lung, Chi-Wen;Yang, Sai-Wei;Hsieh, Lin-Fen
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.187-196
    • /
    • 2009
  • The foot type is classified into normal, high or low arch according to either foot print or medial longitudinal arch (MLA) height. Plantar fasciitis, heel pain, Achilles tendinitis, stress fracture, metatarsalgia, knee pain, shin splint pain, and etc are common foot disorders and associate to the foot type. The purpose of this study was to evaluate several suggested bony inclination used to classified the abnormal foot and if the arch index (AI) was correlated with foot morphology. Lateral view and dorso-plantar view of radiographic images and flatbed scanner measurements obtained from 57 college students were analyzed. Results showed that AI measured in this study was higher than Caucasian Americans and European, but similar with African. The ethnic origin could influent the AI distribution. The AI provided a simple quantitative means of assessing the structure of lateral and medial longitudinal arches. The correlation coefficients of true bone height with AI could be further improved by normalized foot width rather than foot length. AI also demonstrated as a good indicator of inclination between calcaneus-fifth metatarsal (CalM5) and calcaneus-first metatarsal (CalX), it is a good means to classify the foot type.

Reliability of Maintained Hull Girders of Two Bulk Carrier Designs Subjected to Fatigue and Corrosion

  • Soares, C.Guedes;Garbatov, Y.
    • Journal of Ship and Ocean Technology
    • /
    • v.3 no.1
    • /
    • pp.27-41
    • /
    • 1999
  • The objective of the paper is to study the impact of changing the traditional hull design of bulk carriers by providing them with a double hull while keeping the same deadweight. It is demonstrated that by introducing the double hull the structural reliability is increased throughout the entire life and also the extend of the needed repair is reduced. The results are obtained with recently developed mathematical tools for the reliability assessment of ship hulls subjected to the existence of multiple cracks both in the stiffeners and in the plating and it models the crack growth process. The effect of corrosion is represented as time dependent. The long-term stress range acting on the elements is defined as a function of the local transverse pressure of the internal cargo and outside sea water combined with the stresses resulting from the longitudinal bending of the hull, which is a combined with the stresses resulting from the longitudinal bending of the hull, which is a combineation of horizontal and vertical bending moments. The effect of maintenance actions is modelled as a stochastic process. The results show that a different design of the midship section improves the structural safety and also the economy with respect to structural repair of bulk carriers.

  • PDF

Plane waves in an anisotropic thermoelastic

  • Lata, Parveen;Kumar, Rajneesh;Sharma, Nidhi
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.567-587
    • /
    • 2016
  • The present investigation is to study the plane wave propagation and reflection of plane waves in a homogeneous transversely isotropic magnetothermoelastic medium with two temperature and rotation in the context of GN Type-II and Type-III (1993) theory of thermoelasticity. It is found that, for two dimensional assumed model, there exist three types of coupled longitudinal waves, namely quasi-longitudinal wave (QL), quasi-transverse wave (QTS) and quasi-thermal waves (QT). The different characteristics of waves like phase velocity, attenuation coefficients, specific loss and penetration depth are computed numerically and depicted graphically. The phenomenon of reflection coefficients due to quasi-waves at a plane stress free with thermally insulated boundary is investigated. The ratios of the linear algebraic equations. These amplitude ratios are used further to calculate the shares of different scattered waves in the energy of incident wave. The modulus of the amplitude and energy ratios with the angle of incidence are computed for a particular numerical model. The conservation of energy at the free surface is verified. The effect of energy dissipation and two temperatures on the energy ratios are depicted graphically and discussed. Some special cases of interest are also discussed.