• Title/Summary/Keyword: Longitudinal member

Search Result 108, Processing Time 0.024 seconds

Development of Optimization System in Shell Landing (Shell Landing 최적화 시스템 개발)

  • Lim, Hyung-Kyun;Kim, Jae-Chul;Lee, Ji-Hyun;Shin, Jun-Sik
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.90-94
    • /
    • 2011
  • Longitudinal shell member that arranged block unit on 3D-curved surface is performed manual working by designer considering spacing of division characteristic, location and twisting at geometrical 3-dimensional form. Shell expansion drawing that drawn by initial design and shell landing work performed by hull production design have overlap of design work in terms of arrangement of shell longitudinal member. In this study, eliminate design overlap on shell member arrangement that is one of ship longitudinal member. Develop shell member optimization and auto arrangement system.

  • PDF

Reinforcement of shield tunnel diverged section with longitudinal member stiffness effect (종방향 부재의 강성효과를 고려한 쉴드 터널 분기부 보강 및 해석기법)

  • Lee, Gyu-Phil;Kim, Do
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.675-687
    • /
    • 2019
  • In recent years, the needs for double deck-tunnels have increased in large cities due to the increase in traffic volume and high land compensation costs. In Korea, a network type tunnel which is smaller than general road tunnels and crosses another tunnel underground is planned. In the shield tunnel joints between the existing shield tunnel and the box-type enlargement section, a partial steel-concrete joint is proposed where the bending moment is large instead of the existing full-section steel joint. In order to analysis the enlargement section of the shield tunnel diverged section to reflect the three-dimensional effect, the two-dimensional analysis model is considered to consider the column effect and the stiffness effect of the longitudinal member. A two-dimensional analysis method is proposed to reflect the stiffness of the longitudinal member and the column effect of the longitudinal point by considering the rigidity of the longitudinal member as the elastic spring point of the connecting part in the lateral model. As a result of the analysis of the model using the longitudinal member, it was considered that the structural safety of the partial steel-concrete joint can be secured by reducing the bending moment of the joint and the box member by introducing the longitudinal member having the stiffness equal to or greater than a certain value.

Determination of Optimal Support for Cable-stayed Bridge Designs (사장교의 설계를 위한 최적 지지조건 결정)

  • An, Zu-Og;Yoon, Young-Man
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.4 s.11
    • /
    • pp.103-109
    • /
    • 2003
  • A numerical analysis of cable-stayed bridge is conducted to determine optimum longitudinal modulus of elasticity which represents the boundary condition between the tower and main girder. The effect of longitudinal modulus of elasticity is investigated for different loading condition (live load, wind load, seismic load), respectively. There are significant changes in the member forces as variations of longitudinal modulus of elasticity, such as, $k_h$=e=100tonf/m/bearing (live load), $k_h$=e=1000tonf/m/bearing (seismic load), However, the wind loads do not affect member forces. The optimum longitudinal modulus of elasticity is determined from considering minimum member forces in the numerical analysis results.

Longitudinal Elongation of Slender Reinforced Concrete Beams Subjected to Cyclic Loading (주기하중을 받는 세장한 철근콘크리트 보의 길이방향 인장변형)

  • Eom, Tae-Sung;Park, Hong-Gun;Kang, Su-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.169-172
    • /
    • 2008
  • Longitudinal elongation develops in reinforced concrete beams that exhibit flexural yielding during cyclic loading. The longitudinal elongation can decrease the shear strength and deformation capacity of the beams. In the present study, nonlinear truss model analysis was performed to study the elongation mechanism of reinforced concrete beams. The results showed that residual tensile plastic strain of the longitudinal reinforcing bar in the plastic hinge is the primary factor causing the member elongation, and that the shear-force transfer mechanism of diagonal concrete struts has a substantial effect on the magnitude of the elongation. Based on the analysis results, a simplified method for evaluating member elongation was developed. The proposed method was applied to test specimens with various design parameters and loading conditions..

  • PDF

Spline function solution for the ultimate strength of member structures

  • Zhang, Qi-Lin;Shen, Zu-Yan
    • Structural Engineering and Mechanics
    • /
    • v.2 no.2
    • /
    • pp.185-196
    • /
    • 1994
  • In this paper a spline function solution for the ultimate strength of steel members and member structures is derived based on total Lagrangian formulation. The displacements of members along longitudinal and transverse directions are interpolated by one-order B spline functions and three-order hybrid spline functions respectively. Equilibrium equations are established according to the principle of virtual work. All initial imperfections of members and effects of loading, unloading and reloading of material are taken into account. The influence of the instability of members on structural behavior can be included in analyses. Numerical examples show that the method of this paper can satisfactorily analyze the elasto-plastic large deflection problems of planar steel member and member structures.

Theoretical Stiffness of Cracked Reinforced Concrete Elements (철근콘크리트 부재의 균열 후 강성 이론)

  • 김장훈
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.79-88
    • /
    • 1999
  • The purpose of this paper is to develop a mathematical expression for computing crack angles based on reinforcement volumes in the longitudinal and transverse directions, member end-fixity and length-to-width aspect ratio. For this a reinforced concrete beam-column element is assumed to possess a series of potential crack planes represented by a number of differential truss elements. Depending on the boundary condition, a constant angle truss or a variable angle truss is employed to model the cracked structural concrete member. The truss models are then analyzed using the virtual work method of analysis to relate forces and deformations. Rigorous and simplified solution schemes are presented. An equation to estimate the theoretical crack angle is derived by considering the energy minimization on the virtual work done over both the shear and flexural components the energy minimization on the virtual work done over both the shear and flexural components of truss models. The crack angle in this study is defined as the steepest one among fan-shaped angles measured from the longitudinal axis of the member to the diagonal crack. The theoretical crack angle predictions are validated against experimentally observed crack angle reported by previous researchers in the literature. Good agreement between theory and experiment is obtained.

Longitudinal Elongation of Slender Reinforced Concrete Beams Subjected to Cyclic Loading (주기하중을 받는 세장한 철근콘크리트 보의 길이방향 인장변형)

  • Eom, Tae-Sung;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.785-796
    • /
    • 2008
  • Longitudinal elongation develops in reinforced concrete beams that exhibit flexural yielding during cyclic loading. The longitudinal elongation can decrease the shear strength and deformation capacity of the beams. In the present study, nonlinear truss model analysis was performed to study the elongation mechanism of reinforced concrete beams. The results showed that residual tensile plastic strain of the longitudinal reinforcing bar in the plastic hinge is the primary factor causing the member elongation, and that the shear-force transfer mechanism of diagonal concrete struts has a substantial effect on the magnitude of the elongation. Based on the analysis results, a simplified method for evaluating member elongation was developed. The proposed method was applied to test specimens with various design parameters and loading conditions.

Seismic Evaluation of the Existing RC Piers (기존 철근콘크리트 교각의 내진성평가)

  • 전귀현;이지훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.155-168
    • /
    • 1998
  • In this paper, the structural properties of the existing reinforced concrete(RC) piers are surveyed and the major factors influencing the member strength and deformation capacity are identified. Also a seismic evaluation procedure of RC piers is presented. The factors controlling the member strength are the applied axial load, the reinforcement ratio and yield strength of longitudinal rebar for flexural strength, and the transverse reinforcement for shear strength. Member deformation capacity largely depends on transverse reinforcement ratio and anchor detail, and splice location of longitudinal reinforcement. The above structural detail should be investigated for the detail seismic evaluation of RC piers. The most of existing RC piers have inadequate transverse reinforcement anchor details and the splices of longitudinal reinforcement in the pier bottom where plastic hinges are formed after yielding. Therefore the deformation capacity is not enough for the ductile flexural behavior of the RC piers. The presented evaluation procedure can be used for the rational decisions as to seismic retrofitting of the existing RC piers.

  • PDF

Charateristics of the Jointed Steel-Grid Reinforcement and the Application (결합강그리드보강재의 특성 및 적용)

  • Han, Jung-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.3
    • /
    • pp.15-22
    • /
    • 2002
  • To analysis of the embanked slope stability using a jointed reinforcement, the internal stability and the external stability have to be satisfied, respectively. But, because the lengths of ready-made steel-grid were limited, the reinforcements must be connecting themselves to the reinforcing. In this study, the mechanical test was carried out to investigate the tensile failure and the pullout failure at the joint parts of them, which was based on the analysis of reinforced slope in field. Through the tensile tests in mid-air for the jointed steel-grid, the deformation behavior was seriously observed as follows : deformation of longitudinal member, plastic deformation of longitudinal member and of crank part. Those effects were due to the confining pressure and overburden pressure of the surrounding ground. The bearing resistance at jointed part of jointed steel-grid was due to the latter only. The maximum tensile forces were higher about 20kN~27kN than ultimate pullout resistance, but, the results of those was almost the same in mid-soil. The failures of steel-grid occurred at welded point both of longitudinal members and transverse members and of jointed parts. The strength of jointed parts itself got pullout force about 20kN, which was about 65% for ultimate pullout force of the longitudinal members N=2. To the stability analysis of reinforced structure including the reinforced slope, the studying of connection effects at jointed part of reinforcement members must be considered. Through the results of them, the stability of reinforced structures should be satisfied.

Appropriateness Evaluation of Rural House Collapse Prepare Disaster Shelter Member - Focusing on the Numerical Analysis - (농촌 주택붕괴 대비 방재쉘터의 부재 적정성 평가 - 수치해석을 중심으로 -)

  • Oh, Hyeonmun;Kim, Jungmeyon;Lee, Eungbeom;Lim, Changsu;Kim, Yongseong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.51-60
    • /
    • 2017
  • This research is a basic study to minimize the risk of disaster (earthquakes and landslides) for rural residential houses. In this study, three-dimensional numerical analysis was performed by varying the diameter (D), thickness (T) and the spacing of longitudinal members (C.T.C) of duralumin and galvanized steel pipe as the materials of main members in order to carry out the analysis of the dimension and the applied load of shelter for disaster prevention, and to evaluate the eligibility of members that can satisfy safety and usability. From the evaluation results of the member eligibility by the above numerical analysis, it was found that duralumin has a great influence on the member diameter (D) and thickness (T), and in the case of galvanized steel pipe, its spacing of longitudinal members has a huge amount of influence over the member force, so it is considered that the duralumin and galvanized steel pipe materials can be used as materials for the main members of disaster prevention shelters in terms of safety and usability.