• Title/Summary/Keyword: Longitudinal magnetic field

Search Result 80, Processing Time 0.03 seconds

A Study of Magnetic Properties in $Fe_{73.9}Cu_{1.0}Nb_{3.5}Si_{14.0}B_{7.6}$ by Magnetic Annelaing

  • Kim, Eng-Chan;Kim, Jin-Eui;Nam, Hyo-Duk
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.3
    • /
    • pp.29-33
    • /
    • 2000
  • The crystallographic and high frequency characteristics of $Fe_{73.9}Cu_{1.0}Nb_{3.5}Si_{14.0}B_{7.6}$ soft magnetic alloys were investigated under magnetic field annealing, The crystallization fraction of annealed samples with longitudinal magnetic fields is higher than that of samples without magnetic field. When the transverse magnetic field is applied, the crystallization fraction does not increases but decreases until $500^{circ}C$. It is found that for samples, the saturation induction are all same with 1.3 T. The coercive field of as-cast samples is 1.03 A/cm, but in annealed samples it decrease from 0.56 to 0.1A/cm with increasing annealing temperature from 400 to $550^{circ}C$. The squareness of annealed samples under transverse magnetic field has a small value than that of both without field and with longitudinal field annealing. It is noted that the magnetic field annealing with transverse direction to amorphous $Fe_{73.9}Cu_{1.0}Nb_{3.5}Si_{14.0}B_{7.6}$ profoundly influenced on the Mossbauer spectra in contrast to that with longitudinal direction and without magnetic field.

  • PDF

EFFECT OF MAGNETIC FIELD ON LONGITUDINAL FLUID VELOCITY OF INCOMPRESSIBLE DUSTY FLUID

  • N. JAGANNADHAM;B.K. RATH;D.K. DASH
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.2
    • /
    • pp.401-411
    • /
    • 2023
  • The effects of longitudinal velocity dusty fluid flow in a weak magnetic field are investigated in this paper. An external uniform magnetic field parallel to the flow of dusty fluid influences the flow of dusty fluid. Besides that, the problem under investigation is completely defined in terms of identifying parameters such as longitudinal velocity (u), Hartmann number (M), dust particle interactions β, stock resistance γ, Reynolds number (Re) and magnetic Reynolds number (Rm). While using suitable transformations of resemblance, The governing partial differential equations are transformed into a system of ordinary differential equations. The Hankel Transformation is used to solve these equations numerically. The effects of representing parameters on the fluid phase and particle phase velocity flow are investigated in this analysis. The magnitude of the fluid particle is reduced significantly. The result indicates the magnitude of the particle reduced significantly. Although some of our numerical solutions agree with some of the available results in the literature review, other results differs because of the effect of the introduced magnetic field.

Study on the Coercive Field Strenght Noise Depends on The Magnetic Field Annealing Effect of Amorphous Ribbon (비정질 리본의 자기장중 열처리에 의한 보자력 노이즈의 변화에 관한 연구)

  • 최근화;손대락
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.2
    • /
    • pp.150-153
    • /
    • 1994
  • Magnetic field annealing method has been used to obtain proper hysteresis loop shapes which are useful to a device using amorphous ribbon. In this study, two pairs of Helmhotz coils were used to apply longitudinal and transverse magnetic field during annealing. For the measurement of coercive field strength noise which depends on magnetic field annealing, Co-based amorphous alloy ribbon $VITROVAC^{\circledR}$ 6030 was used. For the sample which was annealed under dc transverse and dc longitudinal magnetic field, coercive field strength noise was nearly independent of magnetizing frequency ranging from 1 to 100 kHz, but dc transverse and ac longitudinal magnetic fields annealed samples show that the coercive field strength noise decreased in power of magnetizing frequency. When magnetic domain nucleation occurred, the coercive field strength noise increased remarkably and decreased in power of magnetizing frequency.

  • PDF

Dynamic Characteristic of Magnetic Fluids in a Circular Pipe (원관내 자성유체의 동적특성)

  • 유신오;박정우;최병호;서이수
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.1
    • /
    • pp.42-47
    • /
    • 2000
  • In the present work, we analyze theoretically the flow of magnetic fluids in a circular pipe with longitudinal magnetic field. We used governing equations induced Shliomis and Polar theory of Eringen. Using theoretical equations and distributions for the velocity, vorticity and angular velocity as the magnetic response, it is shown that magnetic fluid flow is non-Newtonian fluid. We investigate dynamic characteristic of magnetic fluid by comparing longitudinal magnetic field with transverse magnetic field. And, the limits, influence magnetic fluid, of the intensity of the magnetic field with polar, size and magnetic effect parameters are shown.

  • PDF

Buckling and free vibration analysis of tapered FG- CNTRC micro Reddy beam under longitudinal magnetic field using FEM

  • Mohammadimehr, M.;Alimirzaei, S.
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.309-322
    • /
    • 2017
  • In this paper, the buckling, and free vibration analysis of tapered functionally graded carbon nanotube reinforced composite (FG-CNTRC) micro Reddy beam under longitudinal magnetic field using finite element method (FEM) is investigated. It is noted that the material properties of matrix is considered as Poly methyl methacrylate (PMMA). Using Hamilton's principle, the governing equations of motion are derived by applying a modified strain gradient theory and the rule of mixture approach for micro-composite beam. Micro-composite beam are subjected to longitudinal magnetic field. Then, using the FEM, the critical buckling load, and natural frequency of micro-composite Reddy beam is solved. Also, the influences of various parameters including ${\alpha}$ and ${\beta}$ (the constant coefficients to control the thickness), three material length scale parameters, aspect ratio, different boundary conditions, and various distributions of CNT such as uniform distribution (UD), unsymmetrical functionally graded distribution of CNT (USFG) and symmetrically linear distribution of CNT (SFG) on the critical buckling load and non-dimensional natural frequency are obtained. It can be seen that the non-dimensional natural frequency and critical buckling load decreases with increasing of ${\beta}$ for UD, USFG and SFG micro-composite beam and vice versa for ${\alpha}$. Also, it is shown that at the specified value of ${\alpha}$ and ${\beta}$, the dimensionless natural frequency and critical buckling load for SGT beam is more than for the other state. Moreover, it can be observed from the results that employing magnetic field in longitudinal direction of the micro-composite beam increases the natural frequency and critical buckling load. On the other hands, by increasing the imposed magnetic field significantly increases the stability of the system that can behave as an actuator.

Investigation on the component separation of magnetic signal generated from a ferro-magnetic vessel (함정에서 발생하는 자계신호의 성분분리에 대한 검토)

  • Kim, Young-Hak;Doh, JaeWon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.2051-2056
    • /
    • 2014
  • This paper investigated the separation of magnetic signal from a ferro-magnetic object. The magnetic signals were ILM(induced longitudinal magnetization) and IVM(induced vertical magnetization), which were induced by earth magnetic field and PLM(permanent longitudinal magnetization) and PVM(permanent vertical magnetization), which were due to a permanent magnetization of the object, respectively. Magnetic signal separation was based on the fact that magnetization vector could be analyzed according to longitudinal and vertical directions. Also the influence of non-uniform magnetic field from a rectangular coil on the separation was examined. A military vessel with a size close to rectangular coil has more errors on the magnetic signal separation.

Stress Effects on Magnetic Properties of Amorphous Fe-B-Si Ribbon (Fe-B-Si 비정질 리본의 자기특성에 미치는 응력의 영향)

  • 송재성;김기욱;임호빈
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.5
    • /
    • pp.496-500
    • /
    • 1991
  • The effects of annealing with and without magnetic field on magnetic properties of amorphous Fe-B-Si cores have been investigated as a function of toroidal stress. By decreasing the toroidal stress, the magnetic properties of the amorphous ribbon have beenimproved. Near 180 domain walls exist in the thermally annealed toroidal cores, but the domain walls exist in the thermally annealed toroidal cores, but the domain walls are not parallel to the longitudinal direction of the ribbon. In the specimen annealed with a magnetic field strength of 10 Oe in the longitudinal ribbon length axis, the domains are nearly parallel to the longitudinal direction due to the field induced uniaxial anisotropy resulting in further increase in the remanent magnetization and decrease in the coercive force and loss.

  • PDF

Effect of Field Orientation on Magnetization Loss in a Stacked Bi-2223 Conductor (자장방향이 적층 Bi-2223도체의 자화손실에 미치는 영향)

  • 류경우;김현준
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.1
    • /
    • pp.77-82
    • /
    • 2003
  • The ac loss is an important issue in the design of high-Tc superconducting power devices such as transformers and cables. In these devices many Bi-2223 tapes are closely stacked together and exposed to alternating magnetic fields that can have different orientations with respect to a tape. In such arrangement the magnetization loss is influenced by the screening current induced in adjacent tapes and thus different from that in a single tape. This stacking effect was experimentally investigated by measuring the magnetization loss in a stack, which consists of a number of tapes. First the magnetization loss in the single tape was measured in order to confirm the reliability of the loss data measured in the stack. The results for the single tape coincide well will the loss characteristics described in other previous works. For the stack In parallel and longitudinal magnetic fields the measured loss is Independent of both the number of tapes and stacking type. The longitudinal magnetization loss Is well explained rather by the slab model for decoupled filaments. For the tall stack in perpendicular field the measured loss at low fields is greatly decreased, compared to the loss of the single tape. However the loss at high fields is unaffected. These loss behaviors in the tall stack are well described by the slab model for full coupling.

Calculation of Coupling Loss in a HTS Tape by using Analytic Method and Numerical Method (해석적인 방법과 수치적인 방법에 의한 고온초전도테이프의 결합손실 계산)

  • Sim, Jeong-Uk;Lee, Hui-Jun;Cha, Gwi-Su;Lee, Ji-Gwang;Han, Song-Yeop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.6
    • /
    • pp.309-315
    • /
    • 1999
  • Coupling loss is generated by the time-varying external magnetic field in the normal matrix of the multi-filamentary HTS tape. This paper calculates the coupling loss in the HTS tape. Analytic calculation of the coupling loss cannot consider the effect of the different shapes and the arrangement of the filaments. Numerical calculation by using finite element method and analytic calculation of the coupling loss have been done in this paper and results of two calculations have been compared. Transverse magnetic field and longitudinal magnetic field were considered as the external field.

  • PDF

Monte Carlo Calculation of the Dose Profiles for a 6 MeV Electron Beam with Longitudinal Magnetic Fields (세로 자기장에서 6 MeV 전자선의 선량분포에 관한 몬데칼로 계산)

  • 오영기;정동혁;신교철;김기환;김정기;김진기;김부길;이정옥;문성록
    • Progress in Medical Physics
    • /
    • v.13 no.4
    • /
    • pp.195-201
    • /
    • 2002
  • Several investigators have presented the effects of external magnetic fields on the dose distributions for clinical electron and photon beams. We focus the low energy electron beam with more lateral scatter In this study we calculated the beam profiles for an clinical electron beam of 6 MeV with longitudinal magnetic fields of 0.5 T-3.0 T using a Monte Carlo code. The principle of dose enhancements in the penumbra region is to deflect the laterally scattered electrons from its initial direction by the skewness of the laterally scattered electrons along the direction of magnetic field lines due to Lorentz force under longitudinal magnetic field. To discuss the dose enhancement effect on the penumbra area from the calculated results, we introduced the simple term of penumbra reduction ratio (PRR), which is defined as the percentage difference between the penumbra with and without magnetic field at the same depth. We found that the average PRR are 33%, and 49% over the depths of 1.5 cm, 2.0 cm, and 2.4 cm for the magnetic fields of 2.0 T and 3.0 T respectively. For the case of 0.5 T and 1.0 T the effects of magnetic filed were not observed significantly. In order to obtain the dose enhancement effects by the external magnetic field, we think that its strength should be more than 2 T approximately. We expect that the PRR would be saturated to 50-60% with magnetic fields of 3 T-5 T As a result of these calculations we found that the penumbra widths can be reduced with increased magnetic fields. This Penumbra reduction is explained as a result of electron lateral spread outside the geometrical edges of the beam in a longitudinal magnetic field. This means that the electron therapy benefits from the external magnetic fields.

  • PDF