• 제목/요약/키워드: Longitudinal Stress Wave

검색결과 53건 처리시간 0.02초

응력파속도를 이용한 부착식 PSC 텐던의 긴장력 추정 (Estimation of Prestressed Tension on Grouted PSC Tendon Using Measured Elastic Wave Velocity)

  • 김병화;장정범;이홍표;이일근
    • 대한토목학회논문집
    • /
    • 제32권5A호
    • /
    • pp.289-297
    • /
    • 2012
  • 본 연구는 부착식 PSC 텐던의 응력파 속도를 계측하여 텐던에 도입된 긴장응력을 추정 할 수 있는 실험식을 제안한다. 실용적 실험식의 도출을 위하여 도입 긴장력이 다른 다수의 PSC시험체가 제작되었으며, 다양한 조건에서 종진동 실험이 반복 수행되었다. 도입 응력과 응력파 속도 사이의 관계에 영향을 미칠 수 있는 온도, 길이 및 텐던의 개수 등이 영향인자로 고려되었으며, 상사의 법칙을 적용하여 무차원 실험식이 도출 되었다. 제안 기법의 현장 적용성 검증은 실제 발전소 격납건물에 설치된 수직텐던에 대하여 수행되었다. 제안식을 이용하여 추정된 긴장응력은 텐던의 설계응력과 유사하다.

Propagation of plane waves in an orthotropic magneto-thermodiffusive rotating half-space

  • Sheokand, Suresh Kumar;Kumar, Rajeshm;Kalkal, Kapil Kumar;Deswal, Sunita
    • Structural Engineering and Mechanics
    • /
    • 제72권4호
    • /
    • pp.455-468
    • /
    • 2019
  • The present article is aimed at studying the reflection phenomena of plane waves in a homogeneous, orthotropic, initially stressed magneto-thermoelastic rotating medium with diffusion. The enuciation is applied to generalized thermoelasticity based on Lord-Shulman theory. There exist four coupled waves, namely, quasi-longitudinal P-wave (qP), quasi-longitudinal thermal wave (qT), quasi-longitudinal mass diffusive wave (qMD) and quasi-transverse wave (qSV) in the medium. The amplitude and energy ratios for these reflected waves are derived and the numerical computations have been carried out with the help of MATLAB programming. The effects of rotation, initial stress, magnetic and diffusion parameters on the amplitude ratios are depicted graphically. The expressions of energy ratios have also been obtained in explicit form and are shown graphically as functions of angle of incidence. It has been verified that during reflection phenomena, the sum of energy ratios is equal to unity at each angle of incidence. Effect of anisotropy is also depicted on velocities of various reflected waves.

길이방향의 전단응력을 받은 직교이방성 원판에 내재된 외부균열의 등속전파 응력확대계수 $K_{III}$ (Dynamic Stress Intensity Factor $K_{III}$ of Crack Propagating with Constant Velocity in Orthotropic Disk Plate Subjected to Longitudinal Shear Stress)

  • 최상인
    • 한국자동차공학회논문집
    • /
    • 제4권2호
    • /
    • pp.69-79
    • /
    • 1996
  • Dynamic stress intensity factors are derives when the crack is propagating with constant velocity under longitudinal shear stress in orthotropic disk plate. General stress fields of crack tip propagating with constant velocity and least square method are used to obtain the dynamic stress intensity factor. The dynamic stress intensity factors of GLV/GTV=1(=isotropic material or transversely isotropic material) which is obtained in out study nearly coincides with Chiang's results when mode Ⅲ stress is applied to boundary of isotropic disk. The D.S.I.F. of mode Ⅲ stress is greater when α(=angle of crack propagation direction with fiber direction) is 90° than that when α is 0°. In case of a/D(a:crack length, D:disk diameter)<0. 58, the faster crack propagation velocity, the less D.S.I.F. but when crack propagation velocity arrive on ghear stress wave velocity, the D.S.I.F. but when crack propagation velocity arrive on shear stress wave velocity, the D.S.I.F. unexpectedly increases and decreases to zero.

  • PDF

A new size-dependent shear deformation theory for wave propagation analysis of triclinic nanobeams

  • Karami, Behrouz;Janghorban, Maziar
    • Steel and Composite Structures
    • /
    • 제32권2호
    • /
    • pp.213-223
    • /
    • 2019
  • For the first time, longitudinal and transverse wave propagation of triclinic nanobeam is investigated via a size-dependent shear deformation theory including stretching effect. Furthermore, the influence of initial stress is studied. To consider the size-dependent effects, the nonlocal strain gradient theory is used in which two small scale parameters predict the behavior of wave propagation more accurately. The Hamiltonian principle is adopted to obtain the governing equations of wave motion, then an analytic technique is applied to solve the problem. It is demonstrated that the wave characteristics of the nanobeam rely on the wave number, nonlocal parameter, strain gradient parameter, initial stress, and elastic foundation. From this paper, it is concluded that the results of wave dispersion in isotropic and anisotropic nanobeams are almost the same in the presented case study. So, in this case, triclinic nanobeam can be approximated with isotropic model.

콘크리트 동결-융해 손상의 비파죄 평가를 위한 One-Sided 응력파 속도 측정기법의 적용에 관한 연구 (Application of One-Sided Stress Wave Velocity Measurement Technique to Evaluate Freeze-Thaw Damage in Concrete)

  • 이준현;박원수
    • 비파괴검사학회지
    • /
    • 제20권4호
    • /
    • pp.269-275
    • /
    • 2000
  • 동결-융해 피로로부터 발생되는 손상이 콘크리트의 열화 및 붕괴를 초래하는 중대한 문제가 된다는 것은 이미 널리 알려져 있다. 일반적으로 동결-융해 피로가 지속되면 콘크리트의 미시조직에 내부응력과 크랙을 유발시킨다. 본 연구에서는 콘크리트에서의 동결-응해 손상을 평가하기 위해 종파와 표면파속도를 동시에 측정하는 one-sided 응력파 속도측정기법이라는 새로운 기법을 사용하였다. 상업용 시험장치를 이용하여 ASTM C666에 따라 제작된 $400{\times}350{\times}100mm$ 크기의 콘크리트 시편에 동결-융해 손상을 발생시켰다. 1사이클은 온도변화를 -14에서 $4^{\circ}C$로 하였고, $4{\sim}5$시간이 소요되었다. 매 5사이클마다 one-sided 응력파 속도측정기법에 기초하여 종파 및 표면파속도를 측정하였다. 동결-융해 손상이 증가함에 따라 종파 및 표면파속도의 변화가 있었고 이것은 동결-등채 피로 손상과정을 보다 유효하게 나타낸다는 것을 입증하였다. 또한 one-sided 기법에 의해 측정된 종파속도의 변화를 투과법을 이용하여 측정된 결과와 비교하였다.

  • PDF

Stochastic elastic wave analysis of angled beams

  • Bai, Changqing;Ma, Hualin;Shim, Victor P.W.
    • Structural Engineering and Mechanics
    • /
    • 제56권5호
    • /
    • pp.767-785
    • /
    • 2015
  • The stochastic finite element method is employed to obtain a stochastic dynamic model of angled beams subjected to impact loads when uncertain material properties are described by random fields. Using the perturbation technique in conjunction with a precise time integration method, a random analysis approach is developed for efficient analysis of random elastic waves. Formulas for the mean, variance and covariance of displacement, strain and stress are introduced. Statistics of displacement and stress waves is analyzed and effects of bend angle and material stochasticity on wave propagation are studied. It is found that the elastic wave correlation in the angled section is the most significant. The mean, variance and covariance of the stress wave amplitude decrease with an increase in bend angle. The standard deviation of the beam material density plays an important role in longitudinal displacement wave covariance.

동계 북태평양을 항행하는 대형선박의 황천피항조선에 관한 연구 (A Study on the VLCC's Handling to Avoid Heavy Weather ofthe North Pacific in Winter.)

  • 민병언;정명선
    • 한국항해학회지
    • /
    • 제8권2호
    • /
    • pp.51-70
    • /
    • 1984
  • In the North Pacific Ocean a lot of large waves set up in winter, affected by continued winds and swells owing to severe extratropical cyclones. Under this sea condition, if the ship is about 100,000L/T (in deadweight capacity tonnage), we can't find the danger involved in the ship at sea apparently. But when we compare the seaworthiness of ship's building strength with the stress given to the hull by waves, we can't insist that the former be more stronger than the latter. As a result, VLCC is in danger of destroying and cutting for lack of longitudinal strength in heavy weather. Up to this time, Naval Architects have actively studied the relation between ship's longitudinal strength and waves as a ship's projector; however, actually, they have never made more profound study on the problem of longitudinal strength in relation to navigation. The main puprpose of this thesis is to clarify these vivid actual states of ship's trouble unknown to ship's masters. In this thesis we picked up VLCC Pan Yard, a vessel of Pan Ocean Bulk Carrier company's, as a model ship. And in the North Pacific Ocean, we have chosen for this research the basins where the wind speed and the wave height are greater than average. The data used this thesis are quotes from the "winds and waves of the North Pacific Ocean('64-'73)", and wind speed more than 30 knots was made use of as an ocject of this study. By usinh the ITTC wave spectrum, we found out the significant waves for every 5 knots within the range of 20 knots to 45 knots of wind speed. According to this H1/1000 was calculated. The stress of ship's hull is determined by ship's speed and wave height. We compared the ship's longitudinal strength with a planned wave height by rules of several famous classification societies in the world. In the last analysis, we found out that ship's present planned strength in heavy weather is not enough. Finally we made a graph for avoiding heavy weather, with which we studied safe ship's handling in the North pacafic Ocean in winter.

  • PDF

Elastic Wave Propagation in Monoclinic System Due to Harmonic Line Load

  • Kim, Yong-Yun
    • The Journal of the Acoustical Society of Korea
    • /
    • 제17권2E호
    • /
    • pp.47-52
    • /
    • 1998
  • An analysis of dynamic responses is carried out on monoclinic anisotropic system due to a buried harmonic line source. The load is in the form of a normal stress acting along an arbitrary axis on the plane of symmetry within the orthotropic materials: In case that the line load is acting along the symmetry axis normal to the plane of symmetry, plane wave equation is coupled with verital shear wave and longitudinal wave. However, if the line load is acting along an arbitrary axis normal to the plane of symmetry, plane wave equation is coupled with vertical shear wave, longitudinal wave and horizontal shear wave. We first considered the equation of motion in a reference coordinate system, where the line load is coincident with a symmetry axis of the orthotropic material. Then the equation of motion is transformed into one with respect to general coordinate system with azimuthal angle by using transformation tensor. Plane wave solutions of monoclinic systems are derived for infinite media. Finally complete solutions for the plane harmonic wave are obtained by calculating the inverse of the integral transforms, in which bulk wave poles are avoided by deforming the contour of the integration to the complex plane. Numerical results for examples of orthotropic material belonging to monoclinic symmetry are demonstrated.

  • PDF

영아기 아버지 양육참여, 어머니 양육스트레스, 영아 심리사회발달과 유아기 또래상호작용 간의 종단적 관계 분석 (The Longitudinal Relationship among Paternal Involvement, Maternal Parenting Stress, Psychosocial Development of Infant during Infancy and Peer Interactions during Childhood)

  • 장효은;김춘경
    • 한국보육학회지
    • /
    • 제18권1호
    • /
    • pp.77-102
    • /
    • 2018
  • 이 연구의 목적은 영아기 아버지 양육참여, 어머니 양육스트레스, 영아 심리사회발달과 유아기 또래상호작용간의 종단적 관계를 잠재성장 모형을 통해 검증하고자 하는 것이다. 이를 위해 한국아동패널조사(PSKC)자료의 0세부터 2세까지와 4세부터 6세까지의 자료인 1차 ~ 3차 년도와 5차 ~ 7차 년도의 종단 자료를 활용해 분석하였다. 분석결과 첫째, 아버지 양육참여 초기값이 유아기 놀이상호작용 초기값에 미치는 영향력에서 어머니 양육스트레스의 초기값은 매개효과가 있는 것으로 나타났다. 둘째, 아버지 양육참여 초기값과 변화율은 유아기 놀이방해 및 단절 초기값과 변화율에 미치는 영향력에서 어머니 양육스트레스의 초기값과 변화율은 매개효과가 있는 것으로 나타났다. 셋째, 아버지 양육참여의 초기값과 변화율은 유아기 놀이상호작용의 초기값과 변화율에 미치는 영향력에서 영아 심리사회발달의 초기값과 변화율은 매개효과가 있는 것으로 나타났다. 넷째, 아버지 양육참여 초기값이 유아기 놀이방해 및 단절 초기값에 미치는 영향력에서 영아 심리사회발달의 초기값은 매개효과가 있는 것으로 나타났다.

절리암반에서의 탄성파 전파 특성 (Elastic Wave Propagation in Jointed Rock Mass)

  • 차민수;조계춘;박승형
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.515-520
    • /
    • 2005
  • The behavior of jointed rock mass is much different from that of intact rock due to the presence of joints. Similarly, the characteristics of elastic wave propagation in jointed rock are considerably different from those of intact rock. The propagation of elastic waves in jointed rock is greatly dependent on the state of stress. The roughness, filling materials, and spacing of joints also affect wave propagation in jointed rock. If the wavelength of elastic waves is much larger than the spacing between joints, wave propagation in jointed rock mass can be considered as wave propagation in equivalent continuum. A rock resonant column testing apparatus is made to measure elastic waves propagating through jointed rock in the state of equivalent continuum. Three types of wave, i.e, torsional, longitudinal and flexural waves are monitored during rock resonant column tests. Various roughness and filling materials are applied to joints, and rock columns with various spacings are used to understand how these factors affect wave propagation under a small strain condition. The experimental results suggest that the characteristics of wave propagation in jointed rock mass are governed by the state of stress and influenced by roughness, filling materials and joint spacings.

  • PDF