• 제목/요약/키워드: Longitudinal Heat Flow

검색결과 63건 처리시간 0.028초

개량 루버핀에 의한 열전달 성능향상에 관한 연구 (Numerical Analysis on the Heat Transfer Enhancement by Modified Lovour Fin)

  • 정재동;박병규;이준식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.408-413
    • /
    • 2001
  • Numerical analysis on the three-dimensional laminar flows (Re=1000) and heat transfer in a rectangular channel with punched longitudinal vortex generator have been conducted to explore the heat transfer enhancement and the combined effect of the angle of attack ${\alpha}$ and the lovour angle ${\beta}$. Rectangular winglets have been used as vortex generators. Velocity and temperature fields and spanwise averaged Nu and friction factor were presented. Enhancement of heat transfer and flow loss penalty are evidenced. The results show performance characteristics allowing a reduction in heat transfer surface area of 62% for fixed heat duty and for fixed pumping power compared with that of channel flow without vortex generator. However, adding lovour angle to the vortex generator shows no positive effect on the heat transfer enhancement.

  • PDF

종류식 터널내 소요 환기량에 의한 터널환기 및 화재 시뮬레이션 연구 ( 임고 4 터널 ) (Fire Simulation Study and Tunnel Ventilation of Requirement in the Longitudinal Tunnel. (In Yimgo-4th Tunnel))

  • 채경희
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1378-1385
    • /
    • 2008
  • This study is aimed to analyze the flow patterns and thermal characteristics by computer simulation under the variations of fire strength for Daegu-Pahang Yimgo-4th tunnel, from which flow and heat distributions are predicted in the longitudinal tunnel. Though the results of numerical computations, followings are found; one is that the volume flow rate is discontinuously increasing as closer to fire location, and the other is that a critical design to get faster flow rate is required because of existence of backlayer flow for the high fire strength in view of safety for the people in fire of the tunnel.

  • PDF

$CO_2$ 히트펌프 가스쿨러의 설계변수 변화에 따른 성능해석 (Performance Analysis with Change in Design Parameters of $CO_2$ Heat Pump Gas Cooler)

  • 장영수;김민석
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.639-644
    • /
    • 2006
  • The outlet temperature of gas cooler has a great effect on the efficiency of carbon dioxide heat pump system. In order to obtain a small approach temperature difference at gas cooler, near-counter flow type heat exchanger has been proposed, and larger heat transfer area is demanded. The optimum design of gas cooler involving the analysis of trade-offs between heat transfer performance and cost is desirable. In this study, the effects of geometric parameters, such as the circuit arrangement, tube diameter, transverse tube spacing, longitudinal tube spacing and the number of tube rows and fin spacing on the performance of heat transfer were investigated using the developed model. This study suggested various simulation results for optimum designs of gas cooler.

  • PDF

가스보일러 코일형 열교환기의 열전달 특성에 관한 실험적 연구 (The Experimental Study on the Heat Transfer Characteristics)

  • 홍성혁;김영기;김일겸;김동춘;이창언;임장순
    • 태양에너지
    • /
    • 제17권4호
    • /
    • pp.57-66
    • /
    • 1997
  • The performance of gas-fired boilers were experimentally investigated. The heat exchanger used for the experiments consisted of circular tube with longitudinal fins for the gas side and a spiral coil for the water side. The burner was located at the top of the heat exchanger, and the burned gas flowed down to the exit. The experiments carried out for different water flow rates, the heat capacities of the boiler and the number of baffle. The thermal efficiency of the upward flow was higher than that of the downward flow of the water in the heat exchanger. As the boiler capacity increased, the thermal efficiency decreased. As the number of the baffles increase, the thermal efficiency increased and the increasing rate of the efficiency decreased. The gas-side overall heat transfer coefficient was independent of the flow rate of the water. The effect of the number of the baffles on the heat transfer coefficient was greater than that of the boiler capacity.

  • PDF

Numerical Study of the Magnetohydrodynamic Heat Transfer Peristaltic Flow in Tube Against High Reynolds Number

  • Hamid, A.H.;Javed, Tariq;Ali, N.
    • Journal of the Korean Physical Society
    • /
    • 제73권9호
    • /
    • pp.1295-1302
    • /
    • 2018
  • In the present investigation, we have studied the magnetohydrodynamic (MHD) heat transfer of peristaltic flow in a tube. The analysis is made without imposing any assumption to obtain the streamline and isothermal line directly. Galerkin's finite element method has been used on the governing Navier-Stoke's equation in the form of ${\psi}-{\omega}$. The graphs of the computed longitudinal velocity, temperature and pressure are plotted against different value of the emerging parameter by using the stream function and vorticity. The results are valid beyond the long wavelength and the low Reynolds number limits. We conclude that higher values of the parameters are not independent of the time mean flow rate.

전자부품의 방열방향에 따른 접촉열전도 특성 (Characterization of a Thermal Interface Material with Heat Spreader)

  • 김정균;;이선규
    • 한국정밀공학회지
    • /
    • 제27권1호
    • /
    • pp.91-98
    • /
    • 2010
  • The increasing of power and processing speed and miniaturization of central processor unit (CPU) used in electronics equipment requires better performing thermal management systems. A typical thermal management package consists of thermal interfaces, heat dissipaters, and external cooling systems. There have been a number of experimental techniques and procedures for estimating thermal conductivity of thin, compressible thermal interface material (TIM). The TIM performance is affected by many factors and thus TIM should be evaluated under specified application conditions. In compact packaging of electronic equipment the chip is interfaced with a thin heat spreader. As the package is made thinner, the coupling between heat flow through TIM and that in the heat spreader becomes stronger. Thus, a TIM characterization system for considering the heat spreader effect is proposed and demonstrated in detail in this paper. The TIM test apparatus developed based on ASTM D-5470 standard for thermal interface resistance measurement of high performance TIM, including the precise measurement of changes in in-situ materials thickness. Thermal impedances are measured and compared for different directions of heat dissipation. The measurement of the TIM under the practical conditions can thus be used as the thermal criteria for the TIM selection.

종류식 터널내에서 화재에 의한 열 및 기류분포 예측에 관한 연구 (A Study of Thermal and Air Distribution Forcast by Firing in the Longitudinal Tunnel (In Yimgo - 4th Tunnel))

  • 채경희
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.1209-1212
    • /
    • 2006
  • This study is aimed to analyze the floe patterns and thermal characteristics by computer simulation under the variations of fire strength for Daegu-Pahang Yimgo-4th tunnel, from which flow and heat distributions are predicted In the longitudinal tunnel. Though the results of numerical computations, followings are found; one is that the volume flow rate is discontinuously increasing as closer to fire location, and the other is that a critical design to get faster flow rate is required because of existence of backlayer flow for the high fire strength in view of safety for the people in fire of the tunnel.

  • PDF

복합 부수로의 비정상 유동이 유발하는 난류열전달 증진에 대한 LES 해석 (Large Eddy Simulation of Heat Transfer Performance Enhancement due to Unsteady Flow in Compound Channels)

  • 홍성호;신종근;최영돈
    • 설비공학논문집
    • /
    • 제23권2호
    • /
    • pp.132-138
    • /
    • 2011
  • In the present article, we investigate numerically turbulent flow of air through compound rectangular channels. Large eddy simulation(LES) is employed for unsteady turbulence modeling. LES gives better predictions for the axial mean velocity distribution than those of other turbulent models. Strong large-scale quasi-periodic flow oscillations are observed in most of the geometries investigated. Such large-scale flow oscillations in compound rectangular channels are similar to the quasi-periodic flow pulsation through the gaps between fuel rod bundle in nuclear reactor. It exists in any longitudinal connecting gap between two flow channels. The frequency of this flow oscillation is determined by the geometry of the gap. The large scale cross motions through the rectangular compound channels induce significant heat transfer enhancement of the compound channel flow.

초음파 진동에 의해 발생된 음향유동을 활용한 급속냉각 메카니즘 (Rapid Cooling Mechanism Utilizing Acoustic Streaming Generated by Ultrasonic Vibrations)

  • 노병국;권기정;이동렬
    • 한국소음진동공학회논문집
    • /
    • 제16권10호
    • /
    • pp.1057-1066
    • /
    • 2006
  • Acoustic streaming Induced by longitudinal vibration at 30 kHz is visualized for a test fluid flow between the stationary glass plate and ultrasonic vibrating surface with particle imaging velocimetry (PIV) To measure an increase in the velocity of air flow due to acoustic streaming, the velocity of air flow in a gap between the heat source and ultrasonic vibrator is obtained quantitatively using PIV. The ultrasonic wave propagating into air in the gap generates steady-state secondary vortex called acoustic streaming which enhances convective cooling of the stationary heat source. Heat transfer through air in the gap is represented by experimental convective heat transfer coefficient with respect to the gap. Theoretical analysis shows that gaps for maximum heat transfer enhancement are the multiple of half wavelength. Optimal gaps for the actual design are experimentally found to be half wavelength and one wavelength. A drastic temperature variation exists for the local axial direction of the vibrator according to the measurement of the temperature distribution in the gap. The acoustic streaming velocity of the test fluid in the gap is at maximum when the gap agrees with the multiples of half wavelength of the ultrasonic wave, which are specifically 6 mm and 12 mm.

열 회수 시스템의 최적 설계를 위한 격자 및 경계 조건 검증에 관한 연구 (VALIDATION OF GRID AND BOUNDARY CONDITIONS FOR OPTIMAL DESIGN OF HEAT RECOVERY SYSTEM)

  • 이동균;신승원
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.608-609
    • /
    • 2011
  • In this study, we tried to validate FLUENT solver model and domain setting for the problem of convective heat transfer in multiple tube bank under transitional zone. We have paid special attention to verify proper boundary conditions and the grid convergence. Through validation work, it is found that unsteady solution method with two-dimensional simulation domain can produce reasonable accurate results compared with existing experimental data. Simulation results with steady solution generates relatively large error. We found that both steady and unsteady method for three-dimensional domain shows acceptable accuracy. Further parametric study for deriving correlation from transverse and longitudinal pitch is currently underway.

  • PDF