• Title/Summary/Keyword: Longitudinal Force

Search Result 445, Processing Time 0.026 seconds

The Analysis and Field Measurement of Longitudinal Track Forces for Long Railroad Bridges (교량상 궤도축력의 해석 및 실측결과 비교)

  • Kang, Kee Dong;Park, Jong Bang;Kim, In Jae;Park, Dae Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.907-913
    • /
    • 1994
  • The design of railroad bridges differs from road bridges because of the interface between track structure and bridge structure. The track generally consists of Continuous Welded Rail(CWR) which is fixed by fasteners to the sleepers embedded in the ballast. The ballast provides the interface between the track structure and the bridge structure. Large longitudinal forces can develop from the temperature variation in rail and bridge structure. These longitudinal forces are specially important for long bridges because the bridge layout for span length, pier dimensions and arrangement and type of bearings can be governed by these forces. This report provides a comparison of longitudinal track forces determined by analysis and actual measured track forces. In recent practice the longitudinal track force for European railways is analyzed using a finite element analysis method. This method is very time-consuming and requires the detail design of the bridge to be complete. Redesign is required if the design criteria for longitudinal track forces are not satisfied. There is a need to develop a simple analysis method considering the large number of bridge structures and a relatively short design time on the Korean High Speed Rail Project. The analysis results presented herein, based on a simplified analysis, show good agreement with those obtained by finite element analysis, as well as with those measured on an actual track. The proposed analysis method is particularly useful for the preliminary design of bridge structures.

  • PDF

A Study of Dynamic Analysis of Wheel Force Spectrum between Road and PSC Bridge tracks for the KTX Safety Evaluation (KTX 차량의 주행안정성 평가를 위한 노상과 PSC 교량 상의 윤하중분포 동적해석 연구)

  • Lee, Dong-Jun;Oh, Soon-Taek;Sim, Young-Woo;Yun, Jun-Kwan;Kim, Han-Su
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.793-799
    • /
    • 2011
  • A comprehensive analysis of wheel force spectrum is conducted to provide the KTX safety evaluation with structural behaviour of Pre-Stressed Concrete (PSC) box bridge due to various high speeds. The wheel spectrum for KTX locomotive running over road and PSC bridge tracks is compared using irregular track responses with numerical models of 170m approach road track and 40m span length of PSC box bridge The high-speed railway locomotive is used as 38-degree of freedom system. Three displacements (vertical, lateral, and longitudinal) and three rotational components (pitching, rolling, and yawing) for one car-body and two bogies are considered in the 38-degree of freedom model. Three dimensional frame element of finite element method (FEM) is used to model of the simply supported PSC box bridge. The irregulation of rail-way is derived using the experiential spectrum density function under assumption of twelve level tracks conditions based on the normal probability procedure. The dynamic analyses by Runge-Kutta method which are able to analyze the high frequency wheel force spectrum. A dynamic behaviour of KTX due to high speeds until 450km/h developing speed with relative time is analysed and compared the characteristics running over the road and PSC box bridge tracks. Finally, the KTX integrated evaluation method of safety between high speed train and bridge is presented.

  • PDF

Analysis on the Levitation Force Characteristics of Longitudinal Flux Type Levitation Magnet using Equivalent Magnetic Circuit Model (등가자기회로 모델을 이용한 종자속형 자기부상 전자석의 부상력 특성 해석)

  • Cho, Han-Wook;Kim, Chang-Hyun;Lee, Jong-Min;Han, Hyung-Suk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2236-2245
    • /
    • 2011
  • This paper deals with the levitation force characteristics of electromagnet for MAGLEV vehicle application. The magnetic flux density distribution and levitation force characteristics of the electromagnet are investigated by means of equivalent magnetic circuit model. Firstly, we defined the aligned and unaligned electromagnet module for the full-electromagnet, and magnetic flux paths are represented for each model including leakage and fringing flux paths. Because of the analysis model contains both the permanent magnet and electromagnet coil, we calculated the airgap magnetic flux density and levitation forces using flux superposition in electromagnetic circuit. The results are validated extensively by comparison with finite element analysis. Moreover, the 1/4 scaled magnetic levitation and propulsion test vehicle has been manufactured and tested in order to verify these predictions. The experimental results confirms the validity of the analytical prediction with equivalent magnetic circuit model for the description of a electromagnet.

Can irregular bridges designed as per the Indian standards achieve seismic regularity?

  • Thomas, Abey E.;Somasundaran, T.P.;Sajith, A.S.
    • Advances in Computational Design
    • /
    • v.2 no.1
    • /
    • pp.15-28
    • /
    • 2017
  • One of the major developments in seismic design over the past few decades is the increased emphasis for limit states design now generally termed as Performance Based Engineering. Performance Based Seismic Design (PBSD) uses Displacement Based Design (DBD) methodology wherein structures are designed for a target level of displacement rather than Force Based Design (FBD) methodology where force or strength aspect is being used. Indian codes still follow FBD methodology compared to other modern codes like CalTrans, which follow DBD methodology. Hence in the present study, a detailed review of the two most common design methodologies i.e., FBD and DBD is presented. A critical evaluation of both these methodologies by comparing the seismic performance of bridge models designed using them highlight the importance of adopting DBD techniques in Indian Standards also. The inherent discrepancy associated with FBD in achieving 'seismic regularity' is highlighted by assessing the seismic performance of bridges with varied relative height ratios. The study also encompasses a brief comparison of the seismic design and detailing provisions of IRC 112 (2011), IRC 21 (2000), AASHTO LRFD (2012) and CalTrans (2013) to evaluate the discrepancies on the same in the Indian Standards. Based on the seismic performance evaluation and literature review a need for increasing the minimum longitudinal reinforcement percentage stipulated by IRC 112 (2011) for bridge columns is found necessary.

Experimental Verifications of Fatigue Crack Identification Method Using Excitation Force Level Control for a Cantilever Beam (외팔보에 대한 가진력수준제어를 통한 피로균열규명기법의 실험적 검증)

  • Kim Do-Gyoon;Lee Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1467-1474
    • /
    • 2004
  • In this study, a new damage identification method for beam-like structures with a fatigue crack is proposed. which does not require comparative measurement on an intact structure but require several measurements at different level of excitation forces on the cracked structure. The idea comes from the fact that dynamic behavior of a structure with a fatigue crack changes with the level of the excitation force. The 2$^{nd}$ spatial derivatives of frequency response functions along the longitudinal direction of a beam are used as the sensitive indicator of crack existence. Then, weighting function is employed in the averaging process in frequency domain to account for the modal participation of the differences between the dynamic behavior of a beam with a fatigue crack at the low excitation and one at the high excitation. Subsequently, a damage index is defined such that the location and level of the crack may be identified. It is shown from the analysis of vibration measurements in this study that comparison of frequency response characteristics of a beam with a single fatigue crack at different level of excitation forces enables an effective detection of the crack.

Analysis on the Shift Characteristics of Semi-Spherical CVT using 2-dimensional Friction Model (2차원 마찰모델을 이용한 구면무단변속기의 변속특성해석)

  • Kong, Jin-Hyung;Lim, Won-Sik;Park, Yeon-Gil;Kim, Jung-Yun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.103-109
    • /
    • 2008
  • Semi-spherical CVT(SS-CVT) is one of friction drives, which transmits power via the friction force between a spherical shaped variator and output disks. The variator varies the speed ratio of SS-CVT continuously as well as transmits input power into the output shaft. Therefore two friction forces are normally applied on the variator; one is the longitudinal friction force for power transmission and the other is the lateral for shifting. In order to investigate the dynamic behavior of SS-CVT, we introduced a numerical model of 2-dimensional friction force using a function of slip ratio and slip angle. And a dynamic model, which describes the shifting mechanism of SS-CVT, is developed through 3-dimensional vector analysis. Finally we presented numerical results of the shift characteristics focused on the transient behavior of the variator's slip ratio and slip angle. The numerical results also show the typical CVT shifting characteristics of SS-CVT and stable shifting behaviors of the variator.

Quadratic strip theory for high-order dynamic behavior of a large container ship with 3D flow effects

  • Heo, Kyeong-uk;Koo, Weoncheol;Park, In-Kyu;Ryue, Jungsoo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.2
    • /
    • pp.127-136
    • /
    • 2016
  • Springing is the resonance phenomenon of a ship hull girder with incoming waves having the same natural frequency of the ship. In this study, a simple and reliable calculation method was developed based on quadratic strip theory using the Timoshenko beam approach as an elastic hull girder. Second-order hydrodynamic forces and Froude-Krylov forces were applied as the external force. To improve the accuracy of the strip method, the variation in the added mass along the ship hull longitudinal direction, so called tip-effect, was considered. The J-factor was also employed to compensate for the effect of three-dimensional fluid motion on the two-node vibration of the ship. Using the developed method, the first- and second-order vertical bending moments of the Flokstra ship were compared. A comparative study was also carried out for a uniform barge ship and a 10,000 TEU container ship with the respective methods including the J-factor and tip-effect.

Shear Strength Incorporated with Internal Force State Factor in RC Slender Beams (내력상태계수 도입을 통한 RC보의 전단강도분석)

  • 정제평;김희정;김우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.912-917
    • /
    • 2003
  • In this paper a new truss modeling technique for describing the beam shear resistance mechanism is proposed based on the reinterpretation of the well-known relationship between shear and the rate of change of bending moment in a reinforced concrete beam subjected to combined shear and moment loads. The core of the model is that a new perspective on the shear resistance can be gained by viewing the internal stress filed in terms of the superposition of two base components of shear resistance; arch action and beam action. The arch action can be described as a simple tied-arch which is consisted of a curved compression chord and a tension tie of the longitudinal steel, while the beam action between the two chords can be modeled as a membrane shearing element with forming a smeared truss action. The compatibility of deformation associated to the two action is taken into account by employing an experimental factor or internal state force factor a. Then the base equation of V=dM/dx is numerically duplicated. The new model was examined by the 362 experimental results. The shear strength predicted by the internal force state factor a show better correlation with the tested values than the present shear design.

  • PDF

Seismic Analysis of the Multi-Span Continuous Bridge Considering the Friction of the Expansion Bearings (가동받침 마찰을 고려한 다경간 연속교의 내진 해석)

  • Juhn, Gui Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.63-70
    • /
    • 1994
  • This study presents the nonlinear dynamic analysis method of the multi-span continuous bridge considering the friction of the expansion bearings. Also the numerical analysis is performed for estimating the effect of the friction on the seismic response of the multi-span continuous bridge under the longitudinal ground motion compatible to Korean bridge design response spectra. It is found that even small friction coefficient of the expansion bearings has significant effect on reducing the superstructure displacement due to energy dissipation and distributing the inertia force of the superstructure to the substructures due to frictional force. It is observed that such favorable friction effects increase as the friction coefficient increases and the magnitude of the ground motion decreases. Therefore, the friction of the expansion bearings can be effectively used for the safe and economic design of the continuous span bridge with many spans and large superstructure weight under the small to medium scale longitudinal ground motions.

  • PDF

Fault-Tolerant Driving Control of Independent Steer-by-Wire System for 6WD/6WS Vehicles Using High Slip (고슬립을 이용한 6 륜구동/6 륜조향 차량 고장 안전 주행 제어)

  • Nah, Jae Won;Kim, Won Gun;Yi, Kyongsu;Lee, Jongseok;Lee, Daeok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.731-738
    • /
    • 2013
  • This paper describes a fault-tolerant driving control strategy for an independent steer-by-wire system in sixwheel-drive/six-wheel-steering vehicles. An algorithm has been designed to realize vehicle maneuverability that is as close as possible to that of non-faulty vehicles by inducing high slip ratio of the wheel through a faulty steer-by-wire system in order to reduce the lateral tire force, which is resistant to the yaw motion. Considering the transition of the longitudinal tire force of a wheel with a faulty steer-by-wire component, the longitudinal tire forces are optimally distributed to the other wheels. Fault-tolerant driving performance has been investigated via computer simulations. Simulation studies show that the proposed algorithm can significantly improve the maneuverability of a vehicle with a faulty steer-by-wire system as compared to the optimal traction distribution method.