• Title/Summary/Keyword: Long-term slope stability

Search Result 40, Processing Time 0.029 seconds

Analysis on the Characteristics of the Landslide in Maeri (III) - With a Special Reference on Slope Stability Analysis - (매리 땅밀림형 산사태(山沙汰)의 발생특성(發生特性)에 관한 분석(分析) (III) - 사면(斜面)의 안정해석(安定解析)을 중심(中心)으로 -)

  • Park, Jae-Hyeon;Choi, Kyung;Bae, Jong Soon;Ma, Ho-Seop;Lee, Jong-Hak;Youn, Ho-Jung
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.6
    • /
    • pp.377-386
    • /
    • 2005
  • This study was carried out to analyse the landslide characteristics by ground investigation, borehole image processing system, field seismic test, laboratory test and ground stability analysis at the landsliding area occurred in Maeri, Sangdong-myeon, Gimhaesi, Gyeongsangnam-do. Region I needs to install data logger system to monitor a land displacement during the heavy rainfall events because the region can be liable to occur the land slide by land creeping. It is needed to restore rapidly, if the land displacement occurs in Region I. Region II needs to monitor and repair because of the possibility of slope failure by long-term soil loss. Region III needs constructions to remove ground runoff and ground water to be infiltrated from talus. Region IV where is a stable region, needs to be protected from land cutting or other man-made damage.

Study on collapse mechanism and treatment measures of portal slope of a high-speed railway tunnel

  • Guoping Hu;Yingzhi Xia;Lianggen Zhong;Xiaoxue Ruan;Hui Li
    • Geomechanics and Engineering
    • /
    • v.32 no.1
    • /
    • pp.111-123
    • /
    • 2023
  • The slope of an open cut tunnel is located above the exit of the Leijia tunnel on the Changgan high-speed railway. During the excavation of the open cut tunnel foundation pit, the slope slipped twice, a large landslide of 92500 m3 formed. The landslide body and unstable slope body not only caused the foundation pit of the open cut tunnel to be buried and the anchor piles to be damaged but also directly threatened the operational safety of the later high-speed railway. Therefore, to study the stability change in the slope of the open cut tunnel under heavy rain and excavation conditions, a 3D numerical calculation model of the slope is carried out by Midas GTS software, the deformation mechanism is analyzed, anti-sliding measures are proposed, and the effectiveness of the anti-sliding measures is analyzed according to the field monitoring results. The results show that when rainfall occurs, rainwater collects in the open cut tunnel area, resulting in a transient saturation zone on the slope on the right side of the open cut tunnel, which reduces the shear strength of the slope soil; the excavation at the slope toe reduces the anti-sliding capacity of the slope toe. Under the combined action of excavation and rainfall, when the soil above the top of the anchor pile is excavated, two potential sliding surfaces are bounded by the top of the excavation area, and the shear outlet is located at the top of the anchor pile. After the excavation of the open cut tunnel, the potential sliding surface is mainly concentrated at the lower part of the downhill area, and the shear outlet moves down to the bottom of the open cut tunnel. Based on the deformation characteristics and the failure mechanism of the landslides, comprehensive control measures, including interim emergency mitigation measures and long-term mitigation measures, are proposed. The field monitoring results further verify the accuracy of the anti-sliding mechanism analysis and the effectiveness of anti-sliding measures.

Maintenance of Hazardous Steep Slopes on National Park Trails (국립공원 탐방로 내 위험 급경사지 유지관리 방안 연구)

  • Kim, Hong Gyun;Kim, Tae Ho;Kim, Jae Hak;Kwak, Jae Hwan;Park, Sung Wook;Choi, Soo Won;Song, Young Karb
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.129-142
    • /
    • 2016
  • National parks, which are located mainly in mountainous areas, are always at risk of damage by landslides. The goal of this study is to establish a method for systematically maintaining hazardous steep slopes along trails in national parks. We produced a checklist suitable for each of the 19 national parks nationwide and investigated 183 slopes. The aim of these investigations is to recommend appropriate slope-stability countermeasures, including field investigations and stability analysis. We made preliminary investigations at specific sites, evaluating the slope hazard using specialized equipment such as terrestrial LiDAR. An investment priority formula was developed, and ranking and hazardous grades were calculated as part of a long-term maintenance plan. Finally, to systematically manage dangerous slopes and to house all the field data within one system, we developed the "Slope Maintenance System in National Parks" based on web server that can show various information for slopes.

Binder-Free Synthesis of NiCo2S4 Nanowires Grown on Ni Foam as an Efficient Electrocatalyst for Oxygen Evolution Reaction

  • Patil, Komal;Babar, Pravin;Kim, Jin Hyeok
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.217-222
    • /
    • 2020
  • The design and fabrication of catalysts with low-cost and high electrocatalytic activity for the oxygen evolution reaction (OER) have remained challenging because of the sluggish kinetics of this reaction. The key to the pursuit of efficient electrocatalysts is to design them with high surface area and more active sites. In this work, we have successfully synthesized a highly stable and active NiCo2S4 nanowire array on a Ni-foam substrate (NiCo2S4 NW/NF) via a two-step hydrothermal synthesis approach. This NiCo2S4 NW/NF exhibits overpotential as low as 275 mV, delivering a current density of 20 mA cm-2 (versus reversible hydrogen electrode) with a low Tafel slope of 89 mV dec-1 and superior long-term stability for 20 h in 1 M KOH electrolyte. The outstanding performance is ascribed to the inherent activity of the binder-free deposited, vertically aligned nanowire structure, which provides a large number of electrochemically active surface sites, accelerating electron transfer, and simultaneously enhancing the diffusion of electrolyte.

A Study on the Development of Soil-based PTMs for Analysis of Benzo[a]pyrene - Focusing on the Evaluation of Homogeneity and Stability for the Certification of Benzo[a]pyrenecandidate Reference Materials - (Benzo[a]pyrene 분석용 토양 숙련도 표준시료 개발에 관한 연구 - 후보 표준물질의 인증을 위한 균질성, 안정성 평가를 중심으로 -)

  • Lee, Minhyo;Lee, Guntaek;Joo, Changkyu;Kim, Yonghun;Lee, Bupyoel;Choe, Sunghun;Kim, Myeongock;Hong, Sukyoung;Kim, Gumhee;Lee, Wonseok
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.6
    • /
    • pp.49-58
    • /
    • 2014
  • This study was implemented as a part of the experiment to develop two kinds of soil-based Benzo[a]pyrene (BaP) proficiency testing materials (PTMs) for soil analysis. A test was carried out for the check of solubility of the reference material (high purity reagent) using several solvents. Another test was also conducted for the evaluation of homogeneity and stability of two kinds of candidate soil reference materials. The test analysis of BaP in terms of the candidate materials was conducted according to the Standard Soil Analytical Methods by Ministry of Environment. Dissolution of the reference material was shown to vary depending on solvent type and was higher in the order of Dichloromethane > Acetone > Acetone/MeOH (9 : 1) > N-hexane. In addition, the slope on calibration curve for BaP standard solutions was largest on BaP standard solutions prepared with dichloromethane of the tested solvents. Such tendency appeared egually in the commercial BaP standard solution. Therefore, it is thought to be reasonable to use dichloromethane as the solvent in case of the standard stock solution that is used for the measurement of BaP concentration in soil. ISO 13528 and IUPAC protocol were used for verification of homogeneity on the two kinds of soil candidate materials, Both candidate materials were sufficiently homogeneous. Stability assessment of the two candidate materials was made according to ISO Guide 35 and the result showed that both batches did not have any long-term and short term stability issues that might occur during shipping. However, monitoring results of BaP concentration in soil showed that BaP concentration of the two batches measured at 15 days after the sample preparation was reduced by about 24~37% compared with that of the samples measured on 0 day of the sample preparation. Identification was done with several treatments such as irradiation and sterilization etc. The major cause was shown to be irradiation to the samples.

Preparation of a New $K^{+}-ISFET$ Modified with 4'-Aminobenzo-15-crown-5 and Its Response Characteristics (4'-Aminobenzo-15-crown-5를 수식한 새로운 $K^{+}-ISFET$의 제조와 감응특성)

  • Lee, H.L.;Yun, J.H.;Yang, S.T.;Jung, D.S.;Sohn, B.K.
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.85-92
    • /
    • 1992
  • A new potassium sensitive field effect transistor modified with 4'-aminobenzo-15-crown-5 was prepared and its response characteristics were evaluated. The response slope of $K^{+}-ISFET$ for pH was 30.0 mV/decade and the response time was mere than 3 minutes. And the response slope and time of the $K^{+}-ISFET$ for potassium ion as $19.5{\pm}0.2{\;}mV/decade$ and about 3 minutes, respectively. The linear response range of the sensor for potassium ion was $2.0{\times}10^{-4}{\sim}1.0{\times}10^{-2}M$. The selectivity coefficients of the $K^{+}-ISFET$ for the alkali and alkaline earth metal ions were also evaluated. Sodium, ammonium and calcium ions exhibited relatively significant interference. The long term stability of the sensor was remarkably improved and it could be used for more than 50 days.

  • PDF

Synthesis of RuO2/h-Co3O4 Electrocatalysts Derived from Hollow ZIF and Their Applications for Oxygen Evolution Reaction (중공 ZIF를 이용한 RuO2/h-Co3O4 촉매의 합성 및 산소 발생 반응으로의 활용)

  • Yoonmo Koo;Youngbin Lee;Kyungmin Im;Jinsoo Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.180-185
    • /
    • 2023
  • To improve the efficiency of water electrolysis, it is essential to develop an oxygen evolution reaction (OER) electrocatalyst with high performance and long-term stability, accelerating the reaction rate of OER. In this study, a hollow metal-organic framework (MOF)-derived ruthenium-cobalt oxide catalyst was developed to synthesize an efficient OER electrocatalyst. As the synthesized catalyst increases the surface exposure of ruthenium, a low overpotential (386 mV) was observed at a current density of 10 mA/cm2 with a low Tafel slope. It is expected to be able to replace noble metal catalysts by showing higher mass activity and stability than commercial RuO2 catalysts.

Field Application of a Precast Concrete-panel Retaining Wall Adhered to In-situ Ground (원지반 부착식 판넬옹벽의 현장 적용성 평가)

  • Min, Kyoung-Nam;Lee, Jae-Won;Lee, Jung-Gwan;Kang, In-Kyu;Ahn, Tae-Bong
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.51-61
    • /
    • 2016
  • New building methods are needed to aid increased inner-city redevelopment and industrial construction. A particular area of improvement is the efficient use of cut slopes, with the minimization of associated problems. A retaining wall of precast panels can resist the horizontal earth pressure by increasing the shear strength of the ground and reinforcing it through contact with the panels. Precast panels allow quick construction and avoid the problem of concrete deterioration. Other problems to be solved include the digging of borrow pits, the disposal of material cut from the slope, and degradation of the landscape caused by the exposed concrete retaining wall.This study suggest the methods of improvement of an existing precast panel wall system by changing the appearance of the panels to that of natural rock and improving the process of adhering the panel to a vertical slope. The panels were tested in the laboratory and in the field. The laboratory test verified their specific strength and behavior, and the field test assessed the panels' ground adherence at a vertical cutting. Reinforcement of the cutting slope was also measured and compared with the results of 3D numerical analysis. The results of laboratory test, identified that the shear bar increase the punching resistance of panel. And as a results of test construction, identified the construct ability and field applicability of the panel wall system adhered to in-situ ground. In addition to that, extended measurement and numerical analysis, identified the long-term stability of panel wall system adhered to in-situ ground.

MOF-Derived FeCo-Based Layered Double Hydroxides for Oxygen Evolution Reaction

  • Fang Zheng;Mayur A. Gaikwad;Jin Hyeok Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.377-384
    • /
    • 2023
  • Exploring earth-abundant, highly effective and stable electrocatalysts for electrochemical water splitting is urgent and essential to the development of hydrogen (H2) energy technology. Iron-cobalt layered double hydroxide (FeCo-LDH) has been widely used as an electrocatalystfor OER due to its facile synthesis, tunable components, and low cost. However, LDH synthesized by the traditional hydrothermal method tends to easily agglomerate, resulting in an unstable structure that can change or dissolve in an alkaline solution. Therefore, studying the real active phase is highly significant in the design of electrochemical electrode materials. Here, metal-organic frameworks (MOFs) are used as template precursors to derive FeCo-LDH from different iron sources. Iron salts with different anions have a significant impact on the morphology and charge transfer properties of the resulting materials. FeCo-LDH synthesized from iron sulfate solution (FeCo-LDH-SO4) exhibits a hybrid structure of nanosheets and nanowires, quite different from other electrocatalysts that were synthesized from iron chloride and iron nitrate solutions. The final FeCo-LDH-SO4 had an overpotential of 247 mV with a low Tafel-slope of 60.6 mV dec-1 at a current density of 10 mA cm-2 and delivered a long-term stability of 40 h for the OER. This work provides an innovative and feasible strategy to construct efficient electrocatalysts.

Some considerations for the determination of carbonyl compounds in air: Reaction characteristics of formaldehyde with 2.4-DNPH (대기 중 카보닐 계열 성분의 분석기법의 연구: 포름알데하이드와 DNPH의 반응 특성을 중심으로)

  • Hong, Y.J.;Kim, K.H.
    • Analytical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.43-50
    • /
    • 2005
  • A number of carbonyl compounds including formaldehyde and acetaldehyde are well known for their toxicity and irritancy. Hence, acquisition of both qualitative and quantitative tool for their analysis is essential to resolve issues associated with malodor or indoor pollution. Using HPLC/UV method, we examined various aspects involved in the measurements of formaldehyde in environmental samples. The results of our analysis indicated that its detection was made as low as 0.5 ppb (assuming 5 L of sample volume), while its precision was maintained near 2% in terms of relative standard error (RSE). When the stability of calibration was checked by variability of slope values obtained over long-term period (e.g., one month), its values were found to remain constantly with RSE values of 3%. It was also found that liquid-phase reaction between formaldehyde and DNPH proceed very slowly to attain equilibrium (one and half hour), while requiring adequate amount of DNPH to form their derivatives. The overall results of our study thus suggest that there are a number of factors to consider for the accurate analysis of formaldehyde in ambient air.