• 제목/요약/키워드: Long-term property

검색결과 344건 처리시간 0.03초

장기저장시 가공 원료잎담배의 이화학성 변화 (The Change of Physical and Chemical Properties of Processed Leaf Tobacco During Long-term Storage)

  • 김상범;안동명;이종철;이경구;조수헌
    • 한국연초학회지
    • /
    • 제23권1호
    • /
    • pp.31-39
    • /
    • 2001
  • This study was carried out to investigate the changes of physical and chemical properties and the usability of long-term stored leaf tobacco. The physical chemical properties of the flue-cured and burley leaves produced in 1993, processed in 1994 were analysed from Nov. 1996 to Nov. 1999. The pH and moisture content in leaf decreased slowly until 4 years’storage after processing, while those of leaf changed little thereafter. However, total sugar content continuously decreased until 5 years after processing. The filling capacity increased and shatter resistance index decreased in long-term stored leaf. The sensory test, cilia stasis and the chemical components of cigarette smoke had no significant differences between short and long-term stored leaves. When the processed leaves were stored till 5 years after processing, there were no deteriorative effects on quality and usability of leaf tobacco. Therefore, it is considered that the processed leaf may be stored for 5 years or more under the inevitable situation.

  • PDF

오스테나이트계 316강의 장시간 재료 열화에 따른 미세조직의 변화와 기계적 특성의 변화 (Variation in Microstrutures and Mechanical Properties During Long-term Material Degradation of Austenitic 316L Steel)

  • 공원식;김정석
    • 열처리공학회지
    • /
    • 제34권6호
    • /
    • pp.315-322
    • /
    • 2021
  • In this study, we investigate the variation in microstruture and mechanical property of austenitic 316L stainless steel during long-term material degradation. To simulate the material degradation, the AISI 316 steel was exposed to accelerate under a temperature of 600℃ for up to 10000 hours at each predetermined heat treatment time. As the long-term material degradation time increase, the grain shape was changed from polygonal grains with annealing twins to circular grains. Most twins distributed uniformly interior of grains are recovered and disappered with long-term material degradation. Also, the δ ferrite along grain boundaries decomposed and transformed into the σ phase resulting in decrease of elongation of austenitic 316L stainless steel.

현장계획에 의한 연약지반의 장기 침하 예측지법에 관한 실증적 연구 (A Study on the Practical Estimation Technique of a Long-term Settlement by the Observation Results in the Field)

  • 서수봉;김수삼
    • 한국해양공학회지
    • /
    • 제5권1호
    • /
    • pp.35-44
    • /
    • 1991
  • This study was carried out for the purpose of pre-estimating long-term settlement under condition of actual field soil's property, in case of building up industrial sites on the marine deposit silty clay located at West Coast in Korea. This study analyzed Hyperbolic Method, Square Root Time Method and Exponential Function Method with utilization of measured survey values of settlement in In-Cheon Namdong Industrial Sites. In the future, for the continuos utilization, it seemed to be needed that further the survey values of fields should be accurartely measured for the analysis of more accurate pre-estimate about long-term settlement. Among the prediction methods of settlement Hyperbolic Method seemed to be the best fitting method for measured data. The settlement equations were derived from above three methods, for long-term settlements.

  • PDF

건축용 단열재의 장기 경시변화에 따른 열성능 특성 (The Thermal Performance of Building Insulation Materials According to Long-Term Aging)

  • 최보혜;강재식
    • 설비공학논문집
    • /
    • 제25권11호
    • /
    • pp.617-623
    • /
    • 2013
  • This study is to draw thermal property data during long-term aging, by testing the thermal conductivity of building insulation materials in Korea. The thermal resistance of extruded insulation within 3 days from manufacture performed well over the KS Standard. After 50 to 110 days, however, the thermal performance had deteriorated to the level of the KS standard. Eventually, after 4,000 days, the insulation performance had deteriorated to about 25.4~41.8% of the initial performance. Therefore, this research will be utilized as a reference for thermal properties during long-term aging, in order to improve standards and regulations related to building insulation materials.

감소인자에 의한 토목합성보강재의 장기안정성 평가 (Assessment of Long-Term Stability of Geosynthetic Reinforcement Materials by Reduction Factors)

  • 전한용;목문성;조성호;차동환;김성철;안주환
    • 한국지반신소재학회논문집
    • /
    • 제4권3호
    • /
    • pp.11-19
    • /
    • 2005
  • 2가지 형태의 지오그리드의 장기안정성을 평가하였다. 멤브레인 연신형 지오그리드는 지수함수 형 인장특성을 나타내었으며 섬유형 지오그리드는 파단점에 근접할수록 빠른 인장특성의 증가를 나타내었다. 단기 가속 크리프 시험은 섬유형 지오그리드에는 실시되었지만 멤브레인 연신형 지오그리드의 경우 열적특성 때문에 실온에서만 실시 하였다. 멤브레인 연신형 지오그리드의 크리프 변형률은 인장시험에 의한 극한 인장변형률보다 크게 나타났다. 섬유형 지오그리드의 크리프 변형에 의한 감소인자는 멤브레인 연신형 지오그리드보다 작게 나타났다. 이 결과로부터 섬유형 지오그리드가 멤브레인 연신형 지오그리드보다 크리프 변형에 안정성이 있음을 알 수 있었다.

  • PDF

장경간 강바닥판 케이블교량에 적용하기 위한 폴리우레탄 폴리머콘크리트의 공용특성 연구 (A Study to Evaluate Performance of Poly-Urethane Polymer Concrete for Long-Span Orthotropic Steel Bridge)

  • 박희영;이정훈;곽병석;최이현;김태우
    • 한국도로학회논문집
    • /
    • 제15권1호
    • /
    • pp.1-9
    • /
    • 2013
  • PURPOSES: The purpose of this study is to evaluate physical properties, durability, fatigue resistance, and long-term performance of poly-urethane concrete (PU) which can be possible application of thin layer on long-span orthotropic steel bridge and to check structural stability of bridge structure. METHODS : Various tests of physical properties, such as flexural strength, tensile strength, bond strength and coefficient of thermal expansion tests were conducted for physical property evaluation using two types of poly urethane concrete which have different curing time. Freezing and thawing test, accelerated weathering test and chloride ion penetration test were performed to evaluate the effect of exposed to marine environment. Beam fatigue test and small scale accelerated pavement test were performed to assess the resistance of PU against fatigue damage and long-term performance. Structural analysis were conducted to figure out structural stability of bridge structure and thin bridge deck pavement system. RESULTS: The property tests results showed that similar results were observed overall however the flexural strength of PUa was higher than those of PUb. It was also found that PU materials showed durability at marine environment. Beam fatigue test results showed that the resistances of the PUa against fatigue damage were two times higher than those of the PUb. It was found form small scale accelerated pavement test to evaluate long-term performance that there is no distress observed after 800,000 load applications. Structural analysis to figure out structural stability of bridge structure and thin bridge deck pavement system indicated that bridge structures were needed to increase thickness of steel deck plate or to improve longitudinal rib shape. CONCLUSIONS: It has been known that the use of PU can be positively considered to thin layer on long-span orthotropic steel bridge in terms of properties considered marine environment, resistance of fatigue damage and long-term performance.

동결융해 반복을 받는 콘크리트 포장용 GFRP 다웰바의 장기성능저하 메커니즘 (Long-Term Degradation Mechanism of GFRP Dowel Bar for Jointed Concrete Pavement under Repeated Freezing-Thawing)

  • 원종필;장창일;박찬기;이상우
    • 대한토목학회논문집
    • /
    • 제28권3D호
    • /
    • pp.325-330
    • /
    • 2008
  • GFRP 다웰바의 장기 내구성능 저하 메커니즘을 규명하기 위하여 실제 콘크리트 포장에서 발생할 수 있는 수분환경과 동결융해반복 환경하의 촉진 내구성능 평가를 실시하였으며 그에 따른 미세구조 분석을 통해 성능저하 열화 진행 메커니즘을 분석하였다. GFRP 다웰바의 내구특성 평가는 촉진환경에 노출 후 전단시험을 실시하여 분석하였으며 미세구조 분석을 위하여 SEM 사진과 가스흡착에 의한 공극측정을 실시하였다. 실험결과 수분환경 및 동결 융해반복 환경에 노출된 GFRP 다웰바는 내구특성 저하가 거의 나타나지 않았다. 이와 같은 결과는 미세구조분석에서 명확히 관찰 할 수 있었다.

Analysis of Reduction Factors to Creep Deformation of Reinforced Geosynthetics

  • Jeon, Han-Yong;Yuu, Jung-Jo;Mok, Mun-Sung
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 The Korea-Japan Joint Symposium
    • /
    • pp.104-104
    • /
    • 2003
  • Geosynthetic Reinforcements - membrane drawn type, warp/knitted type, junction bonded type and composite type geogrids, strip type reinforcement - were used to compare the long-term perfor-mance by total factor of safety with reduction factors during service periods. To evaluate the reduction factors, wide-width tensile property, installation damage, creep deformation, chemical and biological degradation tests were performed. Long-term design strengths of geosynthetic reinforcements were calculated by using GRI standard Test Method GG4.

  • PDF

태양전지모듈의 국부적 열특성 변화에 따른 장기적 내구성 및 출력특성 분석 (The analysis on long-term durability and output power characteristics of PV modules by variation on local thermal property)

  • 강기환;김경수;박지홍;유권종;안형근;한득영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.214-215
    • /
    • 2007
  • Int this paper, we studied the analysis on long-term durability and output power characteristics of PV modules by variation on local thermal property. Using 5 modules(80W), we measured the maximum output power change during the test period. And the optical transmittance of glass was compared with PV module's maximum power fluctuation. The external environment change effected contamination on the entire or local surface of module. This caused the local temperature variation of each solar cell on PV module. The specific analysis is shown in the following paper.

  • PDF

세라믹 가스터빈 환경을 고려한 탄화규소의 입자충격 손상거동-장기간 산화에 따른 산화물층의 영향- (Particle Impact Damage behaviors in silicon Carbide Under Gas Turbine Environments-Effect of Oxide Layer Due to Long-Term Oxidation-)

  • 신형섭
    • 대한기계학회논문집
    • /
    • 제19권4호
    • /
    • pp.1033-1040
    • /
    • 1995
  • To simulate strength reliability and durability of ceramic parts under gas turbine application environments, particle impact damage behaviors in silicon carbide oxidized at 1673 K and 1523 K for 200 hours in atmosphere were investigated. The long-term oxidation produced a slight increase in the static fracture strength. Particle impact caused a spalling of oxide layer. The patterns of spalling and damage induced were dependent upon the property and impact velocity of the particle. Especially, the difference in spalling behaviors induced could be explained by introducing the formation mechanism of lateral crack and elastic-plastic deformation behavior at impact sit. At the low impact velocity regions, the oxidized SiC showed a little increase in the residual strength due to the cushion effect of oxide layer, as compared with the as-received SiC without oxide layer.