• Title/Summary/Keyword: Long-term memory

Search Result 808, Processing Time 0.034 seconds

Activation of the M1 Muscarinic Acetylcholine Receptor Induces GluA2 Internalization in the Hippocampus (쥐 해마에서 M1 무스카린 아세틸콜린 수용체의 활성에 의한 GluA2 세포내이입 연구)

  • Ryu, Keun Oh;Seok, Heon
    • Journal of Life Science
    • /
    • v.25 no.10
    • /
    • pp.1103-1109
    • /
    • 2015
  • Cholinergic innervation of the hippocampus is known to be correlated with learning and memory. The cholinergic agonist carbachol (CCh) modulate synaptic plasticity and produced long-term synaptic depression (LTD) in the hippocampus. However, the exact mechanisms by which the cholinergic system modifies synaptic functions in the hippocampus have yet to be determined. This study introduces an acetylcholine receptor-mediated LTD that requires internalization of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors on the postsynaptic surface and their intracellular mechanism in the hippocampus. In the present study, we showed that the application of the cholinergic agonist CCh reduced the surface expression of GluA2 on synapses and that this reduction was prevented by the M1 muscarinic acetylcholine receptor antagonist pirenzepine in primary hippocampal neurons. The interaction between GluA2 and the glutamate receptor-interacting protein 1 (GRIP1) was disrupted in a hippocampal slice from a rat upon CCh simulation. Under the same conditions, the binding of GluA2 to adaptin-α, a protein involved in clathrin-mediated endocytosis, was enhanced. The current data suggest that the activation of LTD, mediated by the acetylcholine receptor, requires the internalization of the GluA2 subunits of AMPA receptors and that this may be controlled by the disruption of GRIP1 in the PDZ ligand domain of GluA2. Therefore, we can hypothesize that one mechanism underlying the LTD mediated by the M1 mAChR is the internalization of the GluA2 AMPAR subunits from the plasma membrane in the hippocampal cholinergic system.

Monitoring of Tidal Sand Shoal with a Camera Monitoring System and its Morphologic Change (카메라를 활용한 조석사주 관측시스템 구축 및 지형변화)

  • Lee, Soong-Ji;Lee, Guan-Hong;Kang, Tae-Soon;Kim, Young-Taeg;Kim, Tea-Lim
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.326-333
    • /
    • 2015
  • A tidal sandshoal, called 'Puldeung' in the Daeijackdo Marine Protected Area(DMPA), is facing erosion due to sand mining in the nearby coastal region. To monitor the morphologic change and erosion of Puldeung, a camera monitoring system was established at the top of Song-Ee Mountain in Daeijack Island. The system consists of 2 Cannon digital cameras, Eye-fi memory card/Long-Term Evolution wireless network, and solar power supply. The acquired camera images were analyzed to obtain the area of Puldeung by the following methods: geometric correction of image, identification of shoreline, areal measurement of Puldeung and its error estimation. To compare the Puldeung area with previously measured area of 1.79 km2 at tidal height of 137 cm in 2008 and of 1.59 km2 at tidal height of 148 cm in 2010, we selected images with same tidal heights. The Puldeung area was 1.37 and 1.23 km2 at the tidal height of 137 and 148 cm, respectively. The erosion at DMPA is very severe and thus it is imperative to initiate the morphodynamical study on the seasonal variation and long-term evolution of Puldeung as well as the causes and measures of Puldeung erosion.

An Empirical Study on the Relationships among Safeguarding Mechanism, Relationship Learning, and Relationship Performance in Technology Cooperation Network by Applying Resource Based Theory (자원기반이론을 적용한 기술협력 네트워크에서 보호 메커니즘, 관계학습, 관계성과의 관계에 대한 실증연구)

  • Kang, Seok-Min
    • Management & Information Systems Review
    • /
    • v.35 no.2
    • /
    • pp.45-66
    • /
    • 2016
  • Firms can make scale of economy and scope of economy by internalizing and using new advanced technology and knowledge from technology cooperation network, decrease risk and cost with partner firm of technology cooperation network, and increase market advantage of product & strengthen firms' position in the market. Due to the advantages of technology cooperation network, the related studies have focused on the positive effect of technology cooperation network. However, the related studies investigating the relationship between technology cooperation network and firm performance have only examined the role of technology cooperation network. Safeguarding mechanism, relationship learning, and relationship performance are categorized into the process of technology cooperation network, and this categorization is applied as resources, capability, and performance by resource based view. The empirical results are reported as belows. First, relationship specific investment and relationship capital positively affect on relationship learning as capability. Second, information sharing, common information understanding, and relationship specific memory development positively affect on long-term orientation, but information sharing has no impact on efficiency and effectiveness. Third, relationship specific investment positively affects on relationship capital and efficiency and effectiveness have positive effects on long-term orientation. Applying technology cooperation network in asymmetric technology dependency with resource based theory, this study suggested the importance of both safeguarding and relationship learning by investigating the relationship among safeguarding, relationship learning, and relationship performance. And it is worthy that this study investigated how firms' behavior change affects relationship performance in the relationship of technology cooperation partner.

  • PDF

Symbolizing Numbers to Improve Neural Machine Translation (숫자 기호화를 통한 신경기계번역 성능 향상)

  • Kang, Cheongwoong;Ro, Youngheon;Kim, Jisu;Choi, Heeyoul
    • Journal of Digital Contents Society
    • /
    • v.19 no.6
    • /
    • pp.1161-1167
    • /
    • 2018
  • The development of machine learning has enabled machines to perform delicate tasks that only humans could do, and thus many companies have introduced machine learning based translators. Existing translators have good performances but they have problems in number translation. The translators often mistranslate numbers when the input sentence includes a large number. Furthermore, the output sentence structure completely changes even if only one number in the input sentence changes. In this paper, first, we optimized a neural machine translation model architecture that uses bidirectional RNN, LSTM, and the attention mechanism through data cleansing and changing the dictionary size. Then, we implemented a number-processing algorithm specialized in number translation and applied it to the neural machine translation model to solve the problems above. The paper includes the data cleansing method, an optimal dictionary size and the number-processing algorithm, as well as experiment results for translation performance based on the BLEU score.

Chord-based stepwise Korean Trot music generation technique using RNN-GAN (RNN-GAN을 이용한 코드 기반의 단계적 트로트 음악 생성 기법)

  • Hwang, Seo-Rim;Park, Young-Cheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.622-628
    • /
    • 2020
  • This paper proposes a music generation technique that automatically generates trot music using a Generative Adversarial Network (GAN) model composed of a Recurrent Neural Network (RNN). The proposed method uses a method of creating a chord as a skeleton of the music, creating a melody and bass in stages based on the chord progression made, and attaching it to the corresponding chord to complete the structured piece. Also, a new chorus chord progression is created from the verse chord progression by applying the characteristics of a trot song that repeats the structure divided into an individual section, such as intro, verse, and chorus. And it extends the length of the created trot. The quality of the generated music was specified using subjective evaluation and objective evaluation methods. It was confirmed that the generated music has similar characteristics to the existing trot.

Forecasting of Rental Demand for Public Bicycles Using a Deep Learning Model (딥러닝 모형을 활용한 공공자전거 대여량 예측에 관한 연구)

  • Cho, Keun-min;Lee, Sang-Soo;Nam, Doohee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.3
    • /
    • pp.28-37
    • /
    • 2020
  • This study developed a deep learning model that predicts rental demand for public bicycles. For this, public bicycle rental data, weather data, and subway usage data were collected. After building an exponential smoothing model, ARIMA model and LSTM-based deep learning model, forecasting errors were compared and evaluated using MSE and MAE evaluation indicators. Based on the analysis results, MSE 348.74 and MAE 14.15 were calculated using the exponential smoothing model. The ARIMA model produced MSE 170.10 and MAE 9.30 values. In addition, MSE 120.22 and MAE 6.76 values were calculated using the deep learning model. Compared to the value of the exponential smoothing model, the MSE of the ARIMA model decreased by 51% and the MAE by 34%. In addition, the MSE of the deep learning model decreased by 66% and the MAE by 52%, which was found to have the least error in the deep learning model. These results show that the prediction error in public bicycle rental demand forecasting can be greatly reduced by applying the deep learning model.

Restoration of damaged speech files using deep neural networks (심층 신경망을 활용한 손상된 음성파일 복원 자동화)

  • Heo, Hee-Soo;So, Byung-Min;Yang, IL-Ho;Yoon, Sung-Hyun;Yu, Ha-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.2
    • /
    • pp.136-143
    • /
    • 2017
  • In this paper, we propose a method for restoring damaged audio files using deep neural network. It is different from the conventional file carving based restoration. The purpose of our method is to infer lost information which can not be restored by existing techniques such as the file carving. We have devised methods that can automate the tasks which are essential for the restoring but are inappropriate for humans. As a result of this study it has been shown that it is possible to restore the damaged files, which the conventional file carving method could not, by using tasks such as speech or nonspeech decision and speech encoder recognizer using a deep neural network.

Expansion of Word Representation for Named Entity Recognition Based on Bidirectional LSTM CRFs (Bidirectional LSTM CRF 기반의 개체명 인식을 위한 단어 표상의 확장)

  • Yu, Hongyeon;Ko, Youngjoong
    • Journal of KIISE
    • /
    • v.44 no.3
    • /
    • pp.306-313
    • /
    • 2017
  • Named entity recognition (NER) seeks to locate and classify named entities in text into pre-defined categories such as names of persons, organizations, locations, expressions of times, etc. Recently, many state-of-the-art NER systems have been implemented with bidirectional LSTM CRFs. Deep learning models based on long short-term memory (LSTM) generally depend on word representations as input. In this paper, we propose an approach to expand word representation by using pre-trained word embedding, part of speech (POS) tag embedding, syllable embedding and named entity dictionary feature vectors. Our experiments show that the proposed approach creates useful word representations as an input of bidirectional LSTM CRFs. Our final presentation shows its efficacy to be 8.05%p higher than baseline NERs with only the pre-trained word embedding vector.

The Effects of Music Therapy on Cognitive Function and Depression in Demented Old Adults (음악요법이 치매노인의 인지기능과 우울에 미치는 효과)

  • Gwon, Ja-Youn;Kim, Jung-Soo
    • Research in Community and Public Health Nursing
    • /
    • v.9 no.2
    • /
    • pp.336-349
    • /
    • 1998
  • The purpose of this study was to test the effects of music therapy on cognitive function and depression in demented old adults. This study was made with one -group in a pre- and post-test design. The subjects were seven demented old adults over, sixty-five years and with mild to moderate cognitive impairment, residing at a nursing home. Music therapy was given by one researcher and one research assistant for thirty to forty minutes twice a week for 4 months. Music therapy was conducted with the subjects both listening and singing with a cassette player and a double-handed drum. In order to evaluate the effects of music, we measured the level of cognitive function and depression at the beginning and at the end of the music therapy session by means of an MMSE- K developed by Kwon and Park and the Depression Inventory developed by Chon. The Data were analyzed using descriptive statistics and a paired t - test analysis using a SPSS PC package. The results are as follows: 1) The subjects of the music therapy showed improvement in cognitive function. The MMSE-K score was significantly increased after music therapy. Especially, memory recall was very significantly. 2) The subjects of the music therapy showed a slight decrease in depression. However, there was no significant difference in the degree of depression between mean scores measured before and after music therapy. The results suggest that music therapy is effective in improving and maintaining cognitive function in demented old adults. And we suggest that long-term music therapy will be required to improve depression in demented old adults. These findings are encouraging the idea that music therapy may improve cognitive impairment.

  • PDF

A Study on Detection of Malicious Android Apps based on LSTM and Information Gain (LSTM 및 정보이득 기반의 악성 안드로이드 앱 탐지연구)

  • Ahn, Yulim;Hong, Seungah;Kim, Jiyeon;Choi, Eunjung
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.5
    • /
    • pp.641-649
    • /
    • 2020
  • As the usage of mobile devices extremely increases, malicious mobile apps(applications) that target mobile users are also increasing. It is challenging to detect these malicious apps using traditional malware detection techniques due to intelligence of today's attack mechanisms. Deep learning (DL) is an alternative technique of traditional signature and rule-based anomaly detection techniques and thus have actively been used in numerous recent studies on malware detection. In order to develop DL-based defense mechanisms against intelligent malicious apps, feeding recent datasets into DL models is important. In this paper, we develop a DL-based model for detecting intelligent malicious apps using KU-CISC 2018-Android, the most up-to-date dataset consisting of benign and malicious Android apps. This dataset has hardly been addressed in other studies so far. We extract OPcode sequences from the Android apps and preprocess the OPcode sequences using an N-gram model. We then feed the preprocessed data into LSTM and apply the concept of Information Gain to improve performance of detecting malicious apps. Furthermore, we evaluate our model with numerous scenarios in order to verify the model's design and performance.