• Title/Summary/Keyword: Long-term interlaminar shear strength

Search Result 2, Processing Time 0.018 seconds

Prediction of Long-Term Interlaminar Shear Strength of Carbon Fiber/Epoxy Composites Exposed to Environmental Factors (환경인자에 노출된 탄소섬유/에폭시 복합재의 장기 층간전단강도 예측)

  • Yoon, Sung Ho;Shi, Ya Long
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.71-76
    • /
    • 2017
  • The purpose of this study was to predict the long-term performance using the interlaminar shear strength of carbon fiber/epoxy composites exposed to environmental factors. Interlaminar shear specimens, manufactured by the filament winding method, were exposed to the conditions of drying at $50^{\circ}C$, $70^{\circ}C$, and $100^{\circ}C$ and of immersion at $25^{\circ}C$, $50^{\circ}C$, and $70^{\circ}C$ for up to 3000 hours, respectively. According to the results, the interlaminar shear strength did not vary significantly with the exposure time for the drying at $50^{\circ}C$ and $70^{\circ}C$, but it increased somewhat for the drying at $100^{\circ}C$ due to the post curing as the exposure time increased. The interlaminar shear strength of the specimens exposed to the immersion at $25^{\circ}C$ did not change significantly at the beginning of exposure, but it decreased with the exposure time and the degree of decrease increased as the environmental temperature increased. The linear regression equations for the environmental temperatures were obtained from the interlaminar shear strength of the specimens exposed to the immersion for up to 3000 hours. Using these linear regression equations, the interlaminar shear strength was estimated to be within 5.5% of the measured value at $25^{\circ}C$ and $50^{\circ}C$, and 2.3% of the measured value at $70^{\circ}C$. Therefore, the proposed performance prediction procedures can predict well the long-term interlaminar shear strength of carbon fiber/epoxy composites exposed to environmental factors.

Effects of High Energy Radiation on the Mechanical properties of Carbon Fiber/Dpoxy Composites (고에너지 방사선이 탄소섬유/에폭시 복합재료의 기계적 물성에 미치는 영향)

  • 박종신
    • The Korean Journal of Rheology
    • /
    • v.3 no.1
    • /
    • pp.22-29
    • /
    • 1991
  • In an effort to predict the long term durability of carbon fiber/epoxy composites in a space environ-ment interlaminar shear strength (ILSS) of the composites was measured as a function of 0.5 MeV electron radiation dosage. For the ILSS measurements a notch method (ASTM D3846) was used with and without side-supports. the supports were used to prevent peeling or bending during the test. The ILSS of both T300/ 5209 longitudinal composite system increases monotonically with radiation when the test is corried out without the support the ILSS of the composites increases initially but then decreases with further radiation. It is also observed that the ILSS of the unsupported case is much lower than that of the supported case. Measurement of epoxy modulus shows that the elastic modulus increases monotonically with radiation. But the breaking strength of the epoxy decreases with radiation. Electron Spectroscopy for Chemcal Analysis shows that the oxygen contents at both the pure epoxy surface and the composite fracture surface increase with radiation dose resulting in the increase of polarity at the interfacial region. This may be a supporting evidence for the increase in the ILSS of the composites.

  • PDF