• Title/Summary/Keyword: Long-term friction test

Search Result 20, Processing Time 0.028 seconds

Characteristics of Negative Skin Friction of Foundation Pile and Construction Management by Experimental Field Test (현장시험을 통한 기초 말뚝 부마찰력의 특성과 시공관리)

  • Hong, Seok-Woo
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.41-48
    • /
    • 2012
  • In this study the negative skin friction test of foundation pile was performed in order to monitor the negative skin frictional force acting on the steel pipe pile installed in soft soil. The monitored frictional stresses obtained from the long-term loading test. Through the long-term frictional stress monitoring test, the economical period for the construction of the superstructure was determined. The following conclusion were derived from this study: (1) In soft soil, negative skin friction increases with the increase in the rate of settlement. (2) In the friction relationship graph, the period where there is no frictional strain increase is verified and the time for the construction of the superstructure is determined. (3) The pile loading test was performed and the negative skin friction was compared with the test results. It was determined that the negative skin friction after driving was larger than the negative skin friction obtained from the loading test. 15 days after the construction, the monitored value was similar with the theoretical data. (4) It was determined that even during the occurrence of negative skin friction an economical construction management can be performed using the long-term monitoring method of negative skin friction.

Experimental Study on the Structural Behaviour of Rotary Friction Damper (회전형 복합마찰댐퍼 구조거동에 대한 실험적 연구)

  • Kim, Do-Hyun;Kim, Ji-Young;Kim, Myeong-Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.4
    • /
    • pp.73-80
    • /
    • 2015
  • The new rotary friction damper was developed using several two-nodal rotary frictional components with different clamping forces. Because of these components, the rotary friction damper can be activated by building movements due to lateral forces such as a wind and earthquake. In this paper, various dependency tests such as displacement amplitude, forcing frequency and long term cyclic loading were carried out to evaluate on the structural performance and the multi-slip mechanism of the new damper. Test results show that the multi-slip mechanism is verified and friction coefficients are dependent on displacement amplitute and forcing frequency except long term cyclic loading.

A Long-Term Friction Test of Bridge Bearings Considering Running Speed of Next Generation Train (차세대 고속철 주행속도를 대비한 교량받침의 장기마찰시험법)

  • Oh, Soon-Taek;Lee, Dong-Jun;Jun, Sung-Min;Jeong, Shin-Hyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.34-39
    • /
    • 2016
  • Structural behaviour of PSC box bridge, on which KTX train runs, is analysed up to 500 km/h speed considering 12 stages track irregularity and interaction between bridge and vehicle. To evaluate wheel forces and rotations of vehicle, lateral wheel forces, derail factor and offload factor calculated on the track combining the bridge and 170 m normal track are compared with existing allowed limits. Maximum longitudinal displacement and accumulated sliding distance of the brige bearings for simply supported and 2 span continuous PSC bridges are presented by each running speeds. Long-term friction tests based on EN-1337-2 are conducted between PTFE and DP-mate plates. Finally, the long-term friction tests are proposed to consider the increasing speed of next generation high-speed train.

Field test of the long-term settlement for the post-grouted pile in the deep-thick soft soil

  • Zou, Jin-Feng;Yang, Tao;Deng, Dong-ping
    • Geomechanics and Engineering
    • /
    • v.19 no.2
    • /
    • pp.115-126
    • /
    • 2019
  • The long-term settlement characteristics for the cast-in-place bored pile in the deep-thick soft soil are investigated by post-grouting field tests. Six cast-in-place bored engineering piles and three cast-in-place bored test piles are installed to study the long-term settlement characteristics. Three post-grouting methods (i.e., post-tip-grouting, post-side-grouting, and tip and side post-grouting) are designed and carried out by field tests. Results of the local test show that decreased settlements for the post-side-grouted pile, the post-tip-grouted pile and the tip and side post-grouted pile are 22.2%~25.8%, 30.10%~35.98% and 32.40%~35.50%, respectively, compared with non-grouted piles. The side friction resistance for non-grouted piles, post-side-grouted pile, post-tip-grouted pile and the tip and side post-grouted pile undertakes 89.6~91.3%, 94.6%, 92.4%~93.0%, 95.7% of the total loading, respectively. At last, the parameters back analysis method and numerical calculation are adopted to predict the long-term settlement characteristics of the cast-in-place bored pile in the deep-thick soft soil. Determined Bulk modulus (K) and a creep parameter (Ks) are used for the back analysis of the long-term settlement of the post-grouted pile. The settlement difference between the back analysis and the measurement data is about 1.11%-7.41%. Long-term settlement of the post-grouted piles are predicted by the back analysis method, and the predicted results show that the settlement of the post-grouted pile are less than 6 mm and will be stable in 30 days.

Evaluation on Fatigue Behavior of EP(Engineering Plastic) Friction Pendulum Bearing System (EP가 적용된 마찰 진자형 지진격리받침의 피로거동분석)

  • Choi, Jung-Youl;Park, Hee-Soo;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.703-708
    • /
    • 2020
  • As the risk of earthquakes increases recently, earthquake-resistant designs were getting interest. For this reason, this study applies that Friction pendulum-type seismic isolator is a device that attenuates seismic energy by friction and pendulum motion. The friction pendulum-type seismic isolator of this study is very easy to transport, install and maintain with light weight of metal by applying the slider using high strength engineering plastic. In addition, there is an advantage that the corrosion resistance is very excellent compared to the existing metal parts. However, there is concern about long-term durability by replacing metal materials. In this study, the frictional pendulum-type seismic isolator with EP was applied to compressive-shear test, repeated fatigue test, and ultimate load test after fatigue test, and analyzed the deformation and shear or properties after the test. As the results, the adequacy of long term fatigue durability was experimentally proven.

Dynamic Behavior Analysis of PSC Train Bridge Friction Bearings for Considering Next-generation High-speed Train (차세대 고속철의 증속을 고려한 PSC 철도교 마찰 교량받침의 동적 거동 해석)

  • Soon-Taek Oh;Seong-Tae Yi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.39-46
    • /
    • 2023
  • In this study, the dynamic behavior of friction bearings of PSC (Pre-Stressed Concrete) box train continuous bridge was numerically analyzed at 10 km/h intervals up to 600 km/h according to the increasing speed of the next-generation high-speed train. A frame model was generated targeting the 40-meter single-span and two-span continuous PSC box bridges in the Gyeongbu High-Speed Railway section. The interaction forces including the inertial mass vehicle model with 38 degrees of freedom and the irregularities of the bridge and track were considered. It was calculated the longitudinal displacement, cumulative sliding distance and displacement speed of the bridge bearings at each running speed so that compared with the dynamic behavior trend analysis of the bridge. In addition, long-term friction test standards were applied to evaluate the durability of friction plates.

Case Studies on the Experiments for Long-Term Shear Behavior of Rock Discontinuities (암반 내 불연속면의 장기 전단 거동 평가를 위한 고찰)

  • Juhyi Yim;Saeha Kwon;Seungbeom Choi;Taehyun Kim;Ki-Bok Min
    • Tunnel and Underground Space
    • /
    • v.33 no.1
    • /
    • pp.10-28
    • /
    • 2023
  • Long-term shear behavior of the rock discontinuities should be analyzed and its stability should be evaluated to ensure the long-term stability of a high-level radioactive waste disposal repository. The long-term shear behavior of the discontinuities can be modeled with creep and RSF models. The shear creep test, velocity step test, and slide-hold-slide test can be performed to determine their model parameters or analyze the shear behavior by experiments under various conditions. Testing apparatuses for direct shear, triaxial compression, and biaxial shear were mainly used and improved to reproduce the thermo-hydro-mechanical conditions of local bedrock, and it was confirmed that the shear behavior could vary. In order to design a high-level radioactive waste disposal site in Korea, the long-term behavior of rock discontinuities should be investigated in consideration of rock types, thermo-hydro-mechanical conditions, metamorphism, and restoration of shear resistance.

Experimental Assessment of Mechanical Properties of Geo-grid Reinforced Material and Long-Term Performance of GT/HDPE Composite

  • Seo, Jung-Min;Min, Kyung-Ho;Hwang, Beong-Bok;Lee, In-Chul;Ruchiranga, Jayasekara Vishara;Jeon, Han-Yong;Jang, Dong-Hwan;Lim, Joong-Yeon
    • Advanced Composite Materials
    • /
    • v.17 no.3
    • /
    • pp.247-258
    • /
    • 2008
  • This paper is concerned with the long-term performance of geo-textile (GT) composites in terms of creep deformation and frictional properties. Composites of PVA GT and HDPE GM were made to investigate the advanced properties of long-term performance related to waste landfill applications. The same experiments were also performed for typical polypropylene and polyester GT and compared to PVA GT/HDPE GM composites. We also develop high performance GT composites with GM by using PVA GT, which is capable of improving the frictional properties and thus enhances long-term performance of GT composites. Experimental study reveals that the friction coefficient of GT composites is relatively large compared with those of polyester and polypropylene non-woven GT as long as the friction media has similar size to the particles of domestic standard earth. In addition, the geo-composites bonded with geo-grid by a chemical process were investigated experimentally in terms of strain evaluation and creep response values. Geo-grid plays an important role as a reinforcing material. Three kinds of geo-grid were prepared as strong yarn polyester and they were woven type, non-woven type, and wrap knitted type. The sample geo-grids were then coated with PVC. The rib tensile strength tests were conducted to evaluate geo-grid products in terms of tensile strength with regard to single rib. The test was performed according to GRI-GGI. It was concluded again from the experiments that the tensile and creep strains of the geo-grid showed such stable values that the geo-grid prepared in this study could protect geo-textile partially in practical structures.

A Program Development for Prediction of Negative Skin Friction on Piles by Consolidation Settlement (압밀침하를 고려한 말뚝의 부마찰력 예측 프로그램 개발)

  • Kim, Hyeong-Joo;Mission, Jose Leo C.
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.9
    • /
    • pp.5-17
    • /
    • 2009
  • The microcomputer program PileNSF (Pile Negative Skin Friction) is developed by the authors in a graphical user interface (GUI) environment using $MATLAB^{(R)}$ for predicting the bearing capacity of a pile embedded in a consolidating ground by surcharge loading. The proposed method extends the one-dimensional soil-pile model based on the nonlinear load transfer method in OpenSees to perform an advanced one-dimensional consolidation settlement analysis based on finite strain. The developed program has significant features of incorporating Mikasa's finite strain consolidation theory that accounts for reduction in the thickness of the clay layer as well as the change of the soil-pile interface length during the progress of consolidation. In addition, the consolidating situation of the ground by surcharge filling after the time of pile installation can also be considered in the analysis. The program analysis by the presented method has been verified and validated with several case studies of long-term test on single piles subjected to negative skin friction. Predicted results of negative skin friction (downdrag and dragload) as a result of long from consolidation settlement are shown to be in good agreement with measured and observed case data.

Synthesis and Antiwear Properties of Ammonium Dithiocarbamate-based Ionic Liquid (I) (암모니움 디티오카바메이트계 이온성 액체의 합성 및 내마모성능 (I))

  • Baek, Seung-Yeob;Kim, Nam-Kyun;Shin, Jihoon;Chung, Keunwo;Kim, Young-Wun
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.323-329
    • /
    • 2014
  • The friction-reducing properties of lubricants containing ionic liquids based on ammonium dithiocarbamate are studied. The ionic liquids are produced through the following two steps: the synthesis of sodium alkyl dithiocarbamates via the substitution reaction of dialkylamine and carbon disulfide and their subsequent conversion into ammonium dithiocarbamate-based ionic liquids through an ion-exchange reaction with a quaternary alkyl ammonium halide salt. The structures of the ionic liquids are characterized by NMR spectroscopy and Fourier transform infrared spectroscopy. The isolated yields of the ionic liquids, which are viscous and pale yellow, are approximately 92%. The Brookfield viscosities and pour points of the ionic liquids are determined. Further, their wear resistances are measured through the four-ball wear test and the Schwingung Reibung Ver-schleiss (oscillation, friction, wear) test. The wear scar diameter of the lubricants containing 1 wt of the quaternary alkyl ammonium dithiocarbamate-based ionic liquids (0.475-0.631 mm) is significantly lower than that of the base oil (0.825 mm), proving that the ammonium dithiocarbamate-based ionic liquids have good friction-reducing characteristics. However, these friction-reducing characteristics fade significantly after long-term storage, owing to the degradation of the ionic liquids.