• Title/Summary/Keyword: Long-term exposure test

Search Result 111, Processing Time 0.023 seconds

Durability Characteristics of RC containing Different Chloride Contents based on Long Term Exposure Test and Accelerated Test (장기폭로시험과 촉진시험에 근거한 염화물 함유량에 따른 철근콘크리트의 내구특성)

  • 권성준;송하원;신수철;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.759-762
    • /
    • 1999
  • The concrete structures possessing good structural integrity can face durability problems due to deteriorations of concrete structures under various environmental conditions. The durability problems weaken the structural integrity in the long run. Especially, the excessive use of sea sand causes serious reinforcement corrosion and carbonation in concrete structures. An accelerated test is often used to predict deterioration as a qualitative measure, but without long term exposure test results or understanding of the relationship between the accelerated test and the long term exposure test, the accelerated test result alone can not be used effectively as a quantitative measure. In this paper, a methodology is proposed to predict the long term deteriorations, based on the result of the short-term accelerated test, of concrete containing different contents of chloride ions. Then, the correlation between two results on the steel corrosion ratio and the carbonation depth is analyzed for concrete with different chloride contents.

  • PDF

Characterization of Durability of PC panel by Accelerating Test in Deterioration Chamber and Long-Term Field Exposure Test (촉진열화 및 장기폭로시험에 의한 고성능 PC패널의 내구성능 및 열화특성)

  • Ma, Sang-Joon;Jang, Pil-Sung;Choi, Jae-Suk;Ju, Jung-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1549-1554
    • /
    • 2008
  • In this paper, The evaluation of durability of the PC Panel lining for tunnel structure was examined through the rapid test by carbonation and freezing and thawing. Also for the purpose of improvement of durability. Namely, the durable characteristics of PC Panel lining by carbonation and freezing and thawing, was evaluated by rapid test and long-term field exposure test and main influence factors were derived. As a result of test, Correlation of accelerating test in deterioration chamber and long-term field exposure test, it will be expected that the proposed correlation well to the prediction of life expectancy of structure and is contributed greatly in the future.

  • PDF

Study on the correlation between long-term exposure tests and accelerated corrosion tests by the combined damage of salts (염해 및 복합열화에 의한 부식촉진시험과 장기폭로 시험의 상관성에 관한 연구)

  • Park, Sang Soon;Lee, Min Woo
    • Corrosion Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.214-223
    • /
    • 2014
  • Interest in the durability assessment and structural performance has increased according to an increase of concrete structures in salt damage environment recent years. Reliable way ensuring the most accelerated corrosion test is a method of performing the rebar corrosion monitoring as exposed directly to the marine test site exposure. However, long-term exposure test has a disadvantage because of a long period of time. Therefore, many studies on reinforced concrete in salt damage environments have been developed as alternatives to replace this. However, accelerated corrosion test is appropriate to evaluate the critical chlorine concentration in the short term, but only accelerated test method, is not easy to get correct answer. Accuracy of correlation acceleration test depends on the period of the degree of exposure environments. Therefore, in this study, depending on the concrete mix material, by the test was performed on the basis of the composite degradation of the salt damage, and investigate the difference of corrosion initiation time of the rebar, and indoor corrosion time of the structure, of the marine environment of the actual environments were inuestigated. The correlation coefficient was derived in the experiment. Long-term exposure test was actually conducted in consideration of the exposure conditions submerged zone, splash zone and tidal zone. The accelerated corrosion tests were carried out by immersion conditions, and by the combined deterioration due to the carbonation and accelerated corrosion due to wet and dry condition.

A Study on the Temporal Correlation of Long-term Exposure Test and Accelerated Corrosion Test of Rebar (장기폭로 시험과 철근 부식 촉진시험의 시간적 상관성에 관한 연구)

  • Lee, Min-Woo;Park, Sang-Soon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.307-313
    • /
    • 2014
  • Recent interest in the increased structural performance and durability evaluation of this concrete structure in a salt damage environment is increasing. The most secure and reliable method of accelerated corrosion test is a method to carry out the rebar corrosion monitoring can be exposed directly to the marine test site exposure. However, long-term exposure testinghas the disadvantage that a long period is necessary. So, a lot of research on RC of salt damage environment have beenpromoted as alternatives to replace this. However, accelerated corrosion test, in the short term only is appropriate and is but an accelerated test method to evaluate the critical chlorine concentration, there is a difficult problem that you still get the answer. It is one of the correlation problems accelerated test correspond to a certain period of exposure environment. Therefore, in this study, to clarify the differences rebar corrosion beginning, through the actual corrosion accelerated test in corrosion time and laboratory test chamber of the structure of the marine environment results in both environments, it is an object of correlation coefficient derived.

A Study on Correlation Between Cyclic Drying-Wetting Accelerated Corrosion Test and Long-term Exposure Test (건습반복 부식촉진시험 및 장기폭로시험의 상관성에 대한 연구)

  • Park, Sang-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.136-143
    • /
    • 2016
  • There are various method for evaluating the durability life of concrete structures due to salt damage. The best way is to perform a corrosion test for a rebar embedded in concrete specimen was exposure to marine environment. However, this method has the disadvantage that it takes a long period of time. Also, accelerated corrosion test which was complemented complements the time-consuming weakness is limited to apply because it could not reveal a correlation between long-term exposure test. Accordingly, the purpose of this study is to derive a correlation coefficient between cycle drying-wetting accelerated corrosion test and long-term exposure test. Corrosion initiation time was measured in four types of concrete samples, i.e., two samples mixed with fly ash(FA) and blast furnace slag(BS), and the other two samples having two water/cement ratio(W/C = 0.6, 0.35) without admixture(OPC 60 and OPC 35). The accelerated corrosion test was carried out by two case, i.e., one is a cyclic drying-wetting method(case 1), and the other is a artificial seawater ponding test method(case 2). Whether corrosion occurs, it was measures using half-cell potential method. The results indicated that case 1 is to accelerated the corrosion of rebar about 24~36% as compared with case 2, then the corrosion of rebar embedded in concrete occurred according to the order of OPC60, FA, BS, OPC35. Correlation coefficient between accelerated corrosion test and long-term exposure test, case 1 is 4.23 to 5.42, and case 2 is 6.54 to 7.82.

Effects of Long-term Exposure of High and Low Humidity on Thin-film Humidity Sensors

  • Lee, Sang-Wook;Choi, Byung Il;Kim, Jong Chul;Woo, Sang-Bong
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.368-373
    • /
    • 2018
  • The effects of long-term exposure of high and low humidity on thin-film humidity sensors are investigated. Five commercially available thin-film humidity sensors are initially calibrated in a humidity chamber as a reference before longterm exposure to high and low humidity. Then, the sensors are kept in a high-humidity environment (~95 %rh) for four months. After the exposure, the sensors are calibrated in the same manner as the initial calibration. Consequently, the device reading values from the humidity sensors are elevated up to about 5 %rh. Interestingly, the degree of elevation by the high-humidity exposure shows a negative correlation with the price of the humidity sensors. Humidity sensors are then kept in a low-humidity environment (~10 %rh) for another four months. After the exposure, a calibration similar to the initial calibration is performed. As a result, the device reading from humidity sensors is decreased, indicating a recovery from the effect of high-humidity exposure. The durability test conducted in this study provides experimental evidence for the use of thin-film humidity sensors in high-humidity environments such as greenhouses and food factories for a long period of time.

Application of repeated exposure design for new product development (반복섭취 실험설계를 활용한 신제품의 시장성 평가)

  • Chung, Seo-Jin
    • Food Science and Industry
    • /
    • v.52 no.1
    • /
    • pp.52-59
    • /
    • 2019
  • The present article covers a brief introduction on how repeated exposure design can be utilized for developing new food products. A generic consumer taste test which measures consumer acceptance in one trial may have limitation in predicting long-term acceptability of a product. The article describes the changes in food preference and choice during the course of life from infants to elderly. Then, several possible theories that proposes to delineate the underlying mechanisms for acquiring the liking for food is introduced. The article also discusses general experimental design, case studies which adopted repeated exposure design, the limitations and rapid test methods to predict long-term acceptance.

A Study on the Reinforcement Corrosion Evaluation of Repair Material and Method for Reinforced Concrete Structure by Long Term Exposure Experiment (장기폭로실험에 의한 철근콘크리트구조물 보수재료$\cdot$공법의 철근부식특성 평가)

  • Kim Young Sun;Lee Eui-Bae;Kim Young Duck;Cho Bong Suk;Kim Jae Hwan;Kim Moo Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.197-200
    • /
    • 2005
  • In this study, for the establishment of the performance evaluation methods and the quality control standards of durability recovery method, the quantitative exposure data by long term exposure test under the coast is accumulated and analyzed Investigating and evaluating the result of exposure test at 30 month of exposure age under the coastal environment, carbonation and salt damage are not happened at all but the difference in electric potential are found. Therefore, it is considered that the reinforcement corrosion at replacement with repair material are caused by active-passive corrosion macrocells.

  • PDF

Performance Evaluation of Repair Methods for RC structures by Accelerating Test in Combined Deterioration Chamber and Long-Term Field Exposure Test (복합열화촉진실험 및 장기현장폭로실험에 의한 RC구조물 보수공법의 보수성능평가)

  • Kwon Young-Jin;Kim Jae-Hwan;Han Byung-Chan;Jang Seung-Yup
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.4 s.35
    • /
    • pp.349-356
    • /
    • 2006
  • At present, the selecting system and analytic estimation criterion on repair materials and methods of the deteriorated RC structures have not yet been set up in domestic. Under these circumstances, deterioration such as shrinkage crack, corrosion of rebar has been often occurred after repair, and this finally results in too frequent repairs. In this study, three types of repair methods were experimentally investigated by the accelerating test in a combined deterioration chamber and long-term field exposure test. Three types of repair methods applied in this study belong to a group of polymer cement mortar, which is commonly used in repair works. According to the results of this study, durability of repair mortar layers and corrosion properties of recovered rebar could be investigated in short period by the accelerating test in a combined deterioration chamber, which can simulate the condition of repeated high-and-low temperature and repeated dry-and-wet environment, spraying chloride solution and emitting $CO_2$ gas. After 36 month long-term filed exposure test in the coastal area, harmful macro-cracks are observed in the polymer cement mortar layer of some repair methods. These crack are considered to result from drying shrinkage of polymer cement mortar. Also, after 36 month exposure, amount of corrosion area and weight loss of rebar are found to be different according to the types of repair methods.

Performance Evaluation of Repair Material and Method for Reinforced Concrete Structure by Long Term Exposure Experiment (장기폭로실험에 의한 철근콘크리트 구조물의 보수재료.공법 성능평가)

  • Kim, Moo-Han;Kim, Gyu-Yong;Cho, Bong-Suk;Kim, Young-Duck;Kim, Young-Sun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.39-46
    • /
    • 2007
  • In this study, for the establishment of the performance evaluation methods and the quality control standards of durability recovery method, the quantitative exposure data by long term exposure test under the coast and normal atmosphere is accumulated and analyzed. Investigating and evaluating the result of exposure test during 30 months of exposure age under the coastal and normal atmosphere environment, carbonation depth and chloride-ion penetration depth very little penetrated than cover depth. It seems reasonable to conclude that main cause of Corrosion of reinforcing bar are chloride-ion and macro cell from the result of corrosion area and corrosion velocity. Therefore, it is considered to be applied as the fundamental data on the performance evaluation and quality control standards of repair material and method through continuous exposure test in the future.