• Title/Summary/Keyword: Long-period tide

Search Result 37, Processing Time 0.033 seconds

Redefinition of the Original Benchmark Height using Long-term Tide Observations Analysis and GPS Levelling Methods (장기간 조위관측자료 분석과 GPS 수준측량 수준원점 성과 재정의)

  • Jung, Tae-Jun;Yoon, Hong-Sic;Hwang, Jin-Sang;Lee, Dong-Ha
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.4
    • /
    • pp.393-403
    • /
    • 2011
  • In this study, we suggested the period of tide observations is proper to calculate the mean sea level(MSL) precisely on Incheon tide station using wavelet analysis, and newly determined then the vertical reference surface of Korea using the calculated MSL. In order to calculate the height difference between the calculated MSL and specific ground station (ICGP) near the Incheon tide stations, we performed the laser measurements directly to the sea surface where located below ICGP. The orthometric-height of ICGP was determined that corrected the height difference to the calculated MSL using linear interpolation method. Finally, we connected the orthometric-height of ICGP with the original benchmark (ORBM) using GPS leveling methods for determining the new orthometric-height of ORBM. As the results, there is a variation amount of 0.026m between the new MSL was calculated in this study and old MSL was calculated in 1910's. Also, there is a difference of 0.035m between the new and old orthometric-heights of ORBM. The connection (or leveling) error of 0.009m was revealed in new orthometric height of ORBM with consideration of MSL variation which may caused by the error of GPS ellipsoid height and/or geoid model. In this study, we could be determined precisely the orthometric-height of ORBM based on the new MSL of Incheon Bay using only GPS leveling method, not a spirit leveling method. Therefore, it is necessary to determine the vertical datum strictly using long-term and continuously tide observations more than 19 years and to use the GPS leveling method widely in the height leveling work for the effective changeover from the orthonormal to the orthometric in national height system.

A Study on Precise Tide Prediction at the Nakdong River Estuary using Long-term Tidal Observation Data (장기조석관측 자료를 이용한 낙동강 하구 정밀조위 예측 연구)

  • Park, Byeong-Woo;Kim, Tae-Woo;Kang, Du Kee;Seo, Yongjae;Shin, Hyun-Suk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.874-881
    • /
    • 2022
  • Until 2016, before discussions on the restoration of brackish water of the Nakdong River Estuary started in earnest, the downstream water level was predicted using the data of existing tide level observatories (Busan and Gadeokdo) several kilometers away from the estuary. However, it was not easy to carry out the prediction due to the dif erence in tide level and phase. Therefore, this study was conducted to estimate tide prediction more accurately through tidal harmonic analysis using the measured water level affected by the tides in the offshore waters adjacent to the Nakdong River Estuary. As a research method, the storage status of observation data according to the period and abnormal data were checked at 10-minute intervals in the offshore sea area near the Nakdong River Estuary bank, and the observed and predicted tides were measured using TASK2000 (Tidal Analysis Software Kit) Package, a tidal harmonic analysis program. Regression analysis based on one-to-one comparison showed that the correlation between the two components was high correlation coef icient 0.9334. In predicting the tides for the current year, if possible, more accurate data can be obtained by harmonically analyzing one-year tide observation data from the previous year and performing tide prediction using the obtained harmonic constant. Based on this method, the predicted tide for 2022 was generated and it is being used in the calculation of seawater inflow for the restoration of brackish water of the Nakdong River Estuary.

The Regional Classification of Tidal Regime using Characteristics of Astronomical Tides, Overtides and Compound Tides in the Han River Estuary, Gyeonggi Bay (천문조, 배조 및 복합조 특성을 이용한 경기만 한강하구 구역별 조석체계 분류)

  • Yoon, Byung Il;Woo, Seung-Buhm;Kim, Jong Wook;Song, Jin Il
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.3
    • /
    • pp.149-158
    • /
    • 2015
  • In this study, we investigate tidal wave propagation characteristics, and classify regional tidal regime using tidal form number considered distribution of astronomical tide, overtides, and compound tides in the Han River Estuary, Gyeonggi Bay. The characteristics of the tidal wave propagation in main channels show dominance of major tidal constituents (e.g., $M_2$, $S_2$, $N_2$, $K_1$ and $O_1$) contributing to the astronomical tide however, distinct increasing of shallow water (e.g., $M_4$) and long period (e.g., $MS_f$) components toward up-estuary. Using the characteristics of tidal form number to astronomical tide, overtides, and compound tides, the regional tidal regime could be assorted into three regions. Firstly, a dominance area of astronomical tide was presented from open sea to a front of Incheon Harbor (Yeomha channel) and to north entrance of Seokmo channel. The area between south and north entrance of Yeomha channel and Ganghaw north channel classified into zone of showing strong shallow water components. It could be separated into upper estuary, upstream the Singok underwater dam, showed dominance of shallow overtides (e.g., $M_4$ and $MS_4$) water and long-term compound tides (e.g., $MS_f$) larger magnitude than astronomical tide. The shallow water components was earlier generated in lower part (south entrance) of Yeomha channel have strong bottom by effect of shallower and narrower compared with Seokmo channel. Tidal asymmetries of upper estuary cause by a development of overtides and compound tides are mainly controlled by influence of man-made structure.

Analysis of the Sea Condition on the Patrol Ship Cheonan Sinking Waters (천안호 침몰해역의 해상조건 분석)

  • Kim, Kang-Min;Lee, Joong-Woo;Kim, Kyu-Kwang;Kwon, So-Hyung;Lee, Hyung-Ha
    • Journal of Navigation and Port Research
    • /
    • v.34 no.5
    • /
    • pp.349-354
    • /
    • 2010
  • Cheonan, Republic of Korea Navy patrol ship sank had happened by an unknown incident in the vicinity of Baekryeongdo southwest 1.6km(1 mile) sea at 21:45 on March 26, 2010. In terms of coastal researcher's point of view, it is meaningful to provide the sea condition of basic data necessary for search and rescue, more detailed predictions and inference data through the numerical simulations. Thus, in this study, we investigated the weather, wave, tide, tidal current, bottom soil conditions, and suspended sediment are investigated at the coast of Baekryeong-Daechung islands. And based on these data, the characteristics of sea conditions were analyzed. The tidal period at the time of incident corresponds between neap tide to mean tide. Until April 3-4 after March 26, the date of incident, the strongest velocity was progressed towards the spring tide. Thus, it was considered to be difficult to search and rescue operations. Also, because the ebb tide was in progress during 21:00 to 22:00, mass transport seems to be prevailed to the southeast. In particular, as the sudden turbulence due to the irregular topography existed was anticipated, we had carried out particle tracking experiment. From this experiment, depending on the situation of flow, the initial movement of the particles were directed to the southeast but it turned out moving towards the offshore based on the long term prediction. Through this result, it is considered that the scope of the search operation should be expanded towards the open sea.

VULNERABILITY OF KOREAN COAST TO THE SEA-LEVEL RISE DUE TO $21^{ST}$ GLOBAL WARMING

  • Cho Kwangwoo;Maeng Jun Ho;Yun Jong-Hwui
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.11a
    • /
    • pp.219-225
    • /
    • 2003
  • The present study intends to assess the long-term steric sea-level change and its prediction, and potential impacts to the sea-level rise due to the 21st global warming in the coastal zone of the Korea in which much socioeconomic activities have been occurred. The analysis of the 23 tide-gauge data near Korea reveals the overall mean sea-level trend of 2.31 mm/yr.In the satellite altimeter data (Topex/Poseidon and ERS), the sea-level trend in the East Sea is 4.6mm/yr. Both are larger than those of the global average value. However, it is quite questionable that the sea-level trends with the tide-gauge data on the neighboring seas of Korea relate to global warming because of the relatively short observation period and large spatial variability. It is also not clear whether the high trend of altimeter data in the East Sea is related to the acceleration of sea level rise in the Sea, short response time of the Sea, natural variability such as decadal variability, short duration of the altimeter. The coastal zone of Korea appears to be quite vulnerable to the 21st sea level rise such that for the I-m sea level rise with high tide and storm surge, the inundation area is 2,643 km2, which is about $1.2\%$ of total area and the population in the risk areas of inundation is 1.255 million, about $2.6\%$ of total population. The coastal zone west of Korea is appeared to be the most vulnerable area compared to the east and south. In the west of the Korea, the North Korea appears to be more vulnerable than South Korea. In order to cope with the future possible impact of sea-level rise to the coastal zone of Korea effectively, it is essential to improve scientific information in the sea-level rise trend, regional prediction, and vulnerability assessment near Korean coast.

  • PDF

Semiweekly Variation of Spring Population of a Mixotrophic Ciliate Myrionecta rubra (=Mesodinium rubrum) in Keum River Estuary, Korea (춘계 금강 하구에서 혼합영양 섬모류인 Myrionecta rubra (=Mesodinium rubrum) 개체군의 단주기 변동)

  • Yih, Won-Ho;Myung, Geum-Og;Kim, Hyung-Seop;Jeong, Hae-Jin
    • ALGAE
    • /
    • v.20 no.3
    • /
    • pp.207-216
    • /
    • 2005
  • Myrionecta rubra, a mixotrophic ciliate, is a cosmopolitan red tide species which is commonly found in neritic and estuarine waters. M. rubra had long been listed as an “nculturable protist”until 2 different laboratory strains were finally established in 2 research groups at the beginning of this century, enabling us to perform initiative investigation into various aspect of the live M. rubra strains (Gustafson et al. 2000; Yih et al. 2004b; Johnson and Stoecker 2005). Field sampling was carried out on high tide at 2 fixed stations around Kunsan Inner Harbor (St.1 near the Estuarine Weir and St.2 off Kunsan Ferry Station) every other day for 4 months from mid-February 2004 to understand detailed figure of the recurrent spring blooms of M. rubra following the onset of the water gates operation of the Keum River Estuarine Weir on August 1994. With its maximum abundance of 272 cells mL$^{-1}$ in St.1, fluctuation pattern of the M. rubra population at the 2 stations was strikingly similar. Notable growth of M. rubra population started on late April, to cause M. rubra red tides during one month from mid-May in which “xceptionally low salinity days”without its red tide were intermittently inserted. High abundance of M. rubra over 50 cells mL$^{-1}$ was recorded at samples with their water temperature and salinity higher than 15${^{\circ}C}$ and 4.0 psu, respectively. During pre-bloom period when salinity fluctuation is moderate and the water temperature is cooler than 15°C, Skeletonema costatum, a chain-forming centric diatom, was most dominant. Cyanobacterial species such as Aphanizomenon flos-aquae and Phormidium sp. replaced other dominant phytoplankters on the days with “xceptionally low salinity”even during the main blooming period of M. rubra. To summarize, M. rubra could form spring blooms in Keum River Estuary when the level of salinity fluctuation was more severe than that for the dominant diatom Skeletonema costatum and milder than that for the predominance by freshwater cyanobacteria. Therefore, optimal control of the scale and frequency of freshwater discharges might lead us to partially modify the fluctuation pattern of M. rubra populations as well as the period of spring blooms by M. rubra in Keum River Estuary. Sampling time interval of 2 days for the present study or daily sampling was concluded to be minimally required for the detailed exploration into the spring blooms by M. rubra populations in estuaries with weirs like Keum River Estuary.

Long-Term Fluctuations of Water Temperatures in the Upper 200m off the Southeast Coast of Korea (한국 동해안 외해 표층 200m 수온의 장기변동)

  • KANG Yong-Q;KANG Hye-Eun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.6
    • /
    • pp.450-458
    • /
    • 1991
  • The thermal structures and their spatio-temporal fluctuations in the upper 200m layer off the southeast coast of Korea are studied using the bimonthly temperature data for 17years(1967-1983) at 37 stations. We analyzed the fluctuations of the temperatures in the surface(0-100m) and in the subsurface(100-200m) layers. The fluctuations of temperatures in the surface water are dominated by the annual variation, whereas the subsurface layer temperatures contain considerable non-seasonal fluctuations. The distributions of water temperature anomalies in the subsurface layer are closely related with those in the surface layer. The predominant periods of temperature fluctuations in the subsurface layer, other than the annual variation, are 14 and 70 months. The period of 14 months coincides with that of the pole tide or Chandler wobble. The cluster analysis shows that our study area can be divided into the cold, the frontal and the warm regions.

  • PDF

Analysis of Long-term Linear Trends of the Sea Surface Height Along the Korean Coast based on Quantile Regression (분위회귀를 이용한 한반도 연안 해면 고도의 장주기 선형 추세 분석)

  • LIM, BYEONG-JUN;CHANG, YOU-SOON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.23 no.2
    • /
    • pp.63-75
    • /
    • 2018
  • This study analyzed the long-term linear trends of the sea surface height around the Korea marginal seas for the period of 1993~2016 by using quantile regression. We found significant difference about 2~3 mm/year for the linear trend between OLS (ordinary least square) and median (50%) quantile regression especially in the Yellow Sea, which is affected by extreme events. Each area shows different trend for each quantile (lower (1%), median (50%) and upper (99%)). Most areas of the Yellow Sea show increasing trend in both low and upper quantile, but significant "upward divergence tendency". This implies that significant increasing trend of upper quantile is higher than that of lower quantile in this area. Meanwhile, South Sea of Korea generally shows "upward convergence tendency" representing that increasing trend of upper quantile is lower than that of lower quantile. This study also confirmed that these tendencies can be eliminated by removing major tidal components from the harmonic analysis. Therefore, it is assumed that the regional characteristics are related to the long term change of tide amplitude.

Investigating the Adjustment Methods of Monthly Variability in Tidal Current Harmonic Constants (조류 조화상수의 월변동성 완화 방법 고찰)

  • Byun, Do-Seong
    • Ocean and Polar Research
    • /
    • v.33 no.3
    • /
    • pp.309-319
    • /
    • 2011
  • This is a preliminary study of the feasibility of obtaining reliable tidal current harmonic constants, using one month of current observations, to verify the accuracy of a tidal model. An inference method is commonly used to separate out the tidal harmonic constituents when the available data spans less than a synodic period. In contrast to tidal constituents, studies of the separation of tidal-current harmonics are rare, basically due to a dearth of the long-term observation data needed for such experiments. We conducted concurrent and monthly harmonic analyses for tidal current velocities and heights, using 2 years (2006 and 2007) of current and sea-level records obtained from the Tidal Current Signal Station located in the narrow waterway in front of Incheon Lock, Korea. Firstly, the l-year harmonic analyses showed that, with the exception of $M_2$ and $S_2$ semidiurnal constituents, the major constituents were different for the tidal currents and heights. $K_1$, for instance, was found to be the 4th major tidal constituent but not an important tidal current constituent. Secondly, we examined monthly variation in the amplitudes and phase-lags of the $S_2$ and $K_1$ current-velocity and tide constituents over a 23-month period. The resultant patterns of variation in the amplitudes and phase-lags of the $S_2$ tidal currents and tides were similar, exhibiting a sine curve form with a 6-month period. Similarly, variation in the $K_1$ tidal constant and tidal current-velocity phase lags showed a sine curve pattern with a 6-month period. However, that of the $K_1$ tidal current-velocity amplitude showed a somewhat irregular sine curve pattern. Lastly, we investigated and tested the inference methods available for separating the $K_2$ and $S_2$ current-velocity constituents via monthly harmonic analysis. We compared the effects of reduction in monthly variability in tidal harmonic constants of the $S_2$ current-velocity constituent using three different inference methods and that of Schureman (1976). Specifically, to separate out the two constituents ($S_2$ and $K_2$), we used three different inference parameter (i.e. amplitude ratio and phase-lag diggerence) values derived from the 1-year harmonic analyses of current-velocities and tidal heights at (near) the short-term observation station and from tidal potential (TP), together with Schureman's (1976) inference (SI). Results from these four different methods reveal that TP and SI are satisfactorily applicable where results of long-term harmonic analysis are not available. We also discussed how to further reduce the monthly variability in $S_2$ tidal current-velocity constants.

Comparison of Sea Level Data from TOPEX/POSEIDON Altimeter and in-situ Tide Gauges in the East Asian Marginal Seas (동아시아 주변해역에서의 TOPEX/POSEIDON 고도 자료와 현장 해수면 자료의 비교)

  • Youn, Yong-Hoon;Kim, Ki-Hyun;Park, Young-Hyang;Oh, Im-Sang
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.4
    • /
    • pp.267-275
    • /
    • 2000
  • In an effort to assess the reliability of satellite altimeter system, we conducted a comparative analysis of sea level data that were collected using the TOPEX/POSEIDON (T/P) altimeter and the 10 tide gauge (TG) stations in the satellite passing track. The analysis was made using data sets collected from marginal sea regions surrounding the Korean Peninsula at T/P cycles of 2 to 230, which correspond to October 1992 to December 1998. Because of strong tidal activity in the study area, treatment of tidal errors is a very critical step in data processing. Hence in the computation of dynamic heights from the Tn data, we adapted the procedures of Park and Gamberoni (1995) to reduce errors associated with it. When these T/P data were treated, the alias periods of M$_2$, S$_2$, and K$_1$ constitutions were found at 62.1, 58.7, and 173 days. The compatibility of the T/P and TG data sets were examined at various filtering periods. The results indicate that the low-frequency signal of Tn data can be interpreted more safely with longer filtering periods (such as up to the maximum selected values of 200 days). When RMS errors for 200-day low-pass filter period was compared among the whole 10 tidal stations, the values spanned in the range of 2.8 to 6.7 cm. The results of correlation analysis at this filtering period also showed a strong agreement between the Tn and TG data sets over the whole stations investigated (e.g., P values consistently less than 0.0001). According to our analysis, we conclude that the analysis of surface sea level using satellite altimeter data can be made safely and reasonably long filtering periods such as 200 days.

  • PDF