• Title/Summary/Keyword: Long-distance and fastcharging electric vehicles

Search Result 1, Processing Time 0.015 seconds

Investigation of Al modification as cationic dopants in Nirich LiNi0.91Co0.06Mn0.03O2 cathode

  • Ye-Wan Yoo;Seung-Hwan Lee
    • Journal of Ceramic Processing Research
    • /
    • v.23 no.5
    • /
    • pp.566-569
    • /
    • 2022
  • In this paper, we have successfully prepared Al-doped Ni-rich LiNi0.91Co0.06Mn0.03O2 cathodes. The structural properties andelectrochemical performances are studied according to Al cationic doping. It can be confirmed that the crystallinity and cationdisordering of Ni-rich LiNi0.91Co0.06Mn0.03O2 were improved by Al doping. Based on such excellent structural quality, theelectrochemical performance of Al doping LiNi0.91Co0.06Mn0.03O2 was superior to that of pristine LiNi0.91Co0.06Mn0.03O2. The Aldoping Ni-rich NCM has an initial discharge capacity of 209.2 mAh g-1. In addition, it shows superior rate capability byshowing capacity retention of 58.5% under a high rate of 6.0 C. Therefore, it can be judged that Al doping LiNi0.91Co0.06Mn0.03O2can be applied to next-generation cathode for long-distance and fast-charging electric vehicles.