• Title/Summary/Keyword: Long-distance Measurement

Search Result 203, Processing Time 0.02 seconds

A Long Range Accurate Ultrasonic Distance Measurement System by Using Period Detecting Method (주기인식 검출방식을 이용한 장거리 정밀 초음파 거리측정 시스템 개발)

  • Lee, Dong-Hwal;Kim, Su-Yong;Yoon, Kang-Sup;Lee, Man-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.41-49
    • /
    • 2007
  • In this paper, we proposed a new ultrasonic distance measurement system with high accuracy and long range. To improve accuracy and enlarge range, the time of flight of ultrasonic is calculated by the period detecting method. In the proposed ultrasonic distance measurement system, the ultrasonic transmitter and receiver are separated but synchronized by RF(Radio frequency) module. The experiment has been implemented from short distance 1m to maximum available distance 30m. And the period detecting method is compared with the conventional threshold level method. Experimental results show the accuracy and range of the distance measurement are improved by this period detecting method.

Verification of Long-distance Vision-based Displacement Measurement System (장거리 영상기반 변위계측 시스템 검증)

  • Kim, Hong-Jin;Heo, Suk-Jae;Shin, Seung-Hoon
    • Journal of the Regional Association of Architectural Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.47-54
    • /
    • 2018
  • The purpose of this study is to verify the long - range measurement performance for practical field application of VDMS. The reliability of the VDMS was verified by comparison with the existing monitoring sensor, GPS, Accelerometer and LDS. It showed the ability to accurately measure the dynamic displacement by tracking a motion of free vibration of target. And using the PSD function of measured data, the results in the frequency domain were also analyzed. We judged that VDMS is able to identify the higher system mode and has sufficient reliability. Based on the reliability verification, we conducted tests for long-distance applicability for actual application of VDMS. The distance from the stationary target model structure was increased by 50m interval, and the maximum distance was set to 400m. From the distance of 150m, the image obtained by the commercial camcorder has an error in the analysis, so the measured displacement comparison was performed between the LDS and the refractor telescope measurement results. In the measurement results of the displacement area of VDMS, the data validity was deteriorated due to the data shift by the external force and the quality degradation of the enlarged image. However, even under the condition that the effectiveness of the displacement measurement data of VDMS is low, the first mode characteristic included in the free vibration of the object is clearly measured. If the influence from the external environment is controlled and stable data is collected, It is judged that reliability of long-distance VDMS can be secured.

A Study on the Measurement and Application of Long Gauge fiber Brags Grating Sensors (긴 게이지 길이 광섬유 격자 센서의 측정과 응용)

  • Kim, Ki-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.343-349
    • /
    • 2005
  • In this research, the fiber Bragg grating sensors with long gauge for displacement measurement in the long distance is developed and tested. The sensors show an accuracy and a capability for displacement measurement oin long distance. Monitoring using static logger of system of FBG sensor with strained optical fiber shows the capability of measurement in the harsh environment such as strong wind. Measurement of long distance displacement by optical fiber sensor if use $250{\mu}m$ optical fiber and impose some strong pre-tension shows possibility in monitoring of nuclear containment structure.

Implementation and Performance Analysis of DGPS & RTK Error Correction Data Real-Time Transmission System for Long-Distance in Mobile Environments

  • Cho, Ik-Sung;Ha, Chang-Seung;Yim, Jae-Hong
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.291-291
    • /
    • 2002
  • DGPS(Differential Global Positioning System) and RTK(RealTime Kinematic) is in one of today's most widely used surveying techniques. But It's use is restricted by the distance between reference station and rover station and it is difficult to process data in realtime by it's own orgnizational limitation in precise measurement of positioning. To meet these new demands, In This paper, new DGPS and RTK correction data services through Internet and PSTN(Public Switched Telephony Network) have been proposed. For this purpose, we implemented performance a DGPS and RTK error correction data transmission system for long-distance using the internet and PSTN network which allows a mobile user to increase the distance at which the rover receiver is located from the reference in realtime. and we analyzed and compared DGPS and RTK performance by experiments through the Internet and PSTN network with the distance and the time.

  • PDF

Theoretical Considerations on Combined Optical Distance Measurements Using a Femtosecond Pulse Laser

  • Joo, Ki-Nam;Kim, Seung-Woo
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.396-400
    • /
    • 2012
  • We introduce a combined technique and the mathematical description for distance measurements using a femtosecond pulse laser in a long range and a fine resolution. For distance measurements, the maximum measurable range can be extended by combining measurement results from several different methods while requiring relationships between the different measurement uncertainties and unambiguity ranges. This paper briefly explains why the uncertainty of a rough measurement technique (RMT) should be, at least, smaller than the half unambiguity range of a fine measurement technique (FMT) in order to combine a FMT with a RMT. Further discussions about the total measurement range, resolution, and uncertainty for various optical measurement techniques are also discussed.

The Precision Laser Range Finder Using Laser Diode for Industrial Applications (반도체 레이저를 이용한 산업용 정밀 거리 측정 시스템)

  • Woo, Sung-Hun;Park, Jung-Hwan;Kim, Young-Min;Park, Dong-Hong;Park, Won-Zoo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.231-234
    • /
    • 2007
  • A measurement technique in an industry site is basis technique which is bringing a ripple effect on an increasing productivity. Recently, a measurement request is increasing in the industry field as well as the variety field such as leisure, research. Thus, it is in point of time to secure an internal technique about measurement using a laser. In this paper, we prepare to develop the industrial precision laser distance measure device that is available measuring in several hundred meters[m]. In other words, we are planning to measure a wide distance using a laser diode that has long life and is compact, inexpensive. Through this research, we'll secure the pulse laser control technique, a signal processing, technique for distance calculation about a laser distance measurement system. And hereafter, we'll plan to commercialize a laser distance device using this research.

  • PDF

Development of Automated Guidance Tracking Sensor System Based on Laser Distance Sensors

  • Kim, Joon-Yong;Kim, Hak-Jin;Shim, Sung-Bo;Park, Soo-Hyun;Kim, Jung-Hun;Kim, Young-Joo
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.319-327
    • /
    • 2016
  • Purpose: Automated guidance systems (AGSs) for mobile farm machinery have several advantages over manual operation in the crop production industry. Many researchers and companies have tried to develop such a system. However, it is not easy to evaluate the performance of an AGS because there is no established device used to evaluate it that complies with the ISO 12188 standard. The objective of this study was to develop a tracking sensor system using five laser distance measurement sensors. Methods: One sensor-for long-range distance measurement-was used to measure travel distance and velocity. The other four sensors-for mid-range distance measurement-were used to measure lateral deviation. Stationary, manual driving, and A-B line tests were conducted, and the results were compared with the real-time kinematic differential global positioning system (RTK-DGPS) signal used by the AGS. Results: For the stationary test, the average error of the tracking sensor system was 1.99 mm, and the average error of the RTK-DGPS was 15.19 mm. For the two types of driving tests, the data trends were similar. A comparison of the changes in lateral deviation showed that the data stability of the developed tracking system was better. Conclusions: Although the tracking system was not capable of measuring long travel distances under strong sunlight illumination because of the long-range sensor's limitations, this dilemma could be overcome using a higher-performance sensor.

Study on Golf Range Finder by using Biprism Theory of Keratometer (케라토미터의 바이프리즘 원리를 이용한 골프거리측정기에 관한 연구)

  • Cha, Jung-Won
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.4
    • /
    • pp.495-501
    • /
    • 2013
  • Purpose: This study was to develop golf range finder which could measure exact distance from golfer to flag by using telescope and biprism. Methods: Golf range finder was made that included telescope and biprism which could move in the telescope, and an accuracy of the range finder was analyzed in distance range 20~200 m. Results: An equation was made for measuring distance which was related at position of biprism, and we could measure distance successfully by using developed golf range finder. Biprism of 2 ${\Delta}$ was useful to measure in short distance but it had bad accuracy in long distance, and 0.5 ${\Delta}$ was more useful in long distance. Image got worse when the biprism approch to focal point of objective lens for measurement in long distance, so we developed multi-layer biprism to prevent the weak point. Conclusions: Image stabilization by biprism for measuring distance was confirmed. Even if hand was moving, the distance could be measured well by using biprism, and we could find that the induced equation for distance measurement was useful. We found that multi-layer biprism, which is was new developed, was more useful than general biprism when the biprism approched to focal point of objective lens for measurement in long distance.

Capturing Distance Parameters Using a Laser Sensor in a Stereoscopic 3D Camera Rig System

  • Chung, Wan-Young;Ilham, Julian;Kim, Jong-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.387-392
    • /
    • 2013
  • Camera rigs for shooting 3D video are classified as manual, motorized, or fully automatic. Even in an automatic camera rig, the process of Stereoscopic 3D (S3D) video capture is very complex and time-consuming. One of the key time-consuming operations is capturing the distance parameters, which are near distance, far distance, and convergence distance. Traditionally these distances are measured by tape measure or triangular indirect measurement methods. These two methods consume a long time for every scene in shot. In our study, a compact laser distance sensing system with long range distance sensitivity is developed. The system is small enough to be installed on top of a camera and the measuring accuracy is within 2% even at a range of 50 m. The shooting time of an automatic camera rig equipped with the laser distance sensing system can be reduced significantly to less than a minute.

The Phase Difference Measurement Module Development for Amplitude Modulated Range Measurement System (진폭 변조 거리 측정 시스템을 위한 정밀 위상차 측정부 개발)

  • Noh, Hyoung-Woo;Park, Jeong-Ho;Kang, Il-Heung;Choi, Mun-Gak;Kim, Kang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.182-190
    • /
    • 2011
  • A amplitude modulation(AM) range measuring system utilizes the phase difference of the modulated envelope of the reflected signal to measure the distance. It is known that the AM system has a problem in accuracy due to antenna leakage signals and spurious reflection signals, but an AM range measurement system using an active reflector, which shifts the frequency bands, has been proposed in order to minimize the measurement errors due to spurious signals. In this paper, a new phase measurement module for the AM range measurement system, which enables to measure long distance with good accuracy, is proposed. The modulation frequency is alternatively selected between 8 and 1 MHz, and the measured distance range with this module is up to 150 m within 2 cm accuracy. A JK flip-flop circuit is used for higher phase accuracy, and an XOR circuit is used to cover long distance.