• Title/Summary/Keyword: Long-Term deflection

Search Result 94, Processing Time 0.024 seconds

Studies on Evaluation for Long-Term Structural Performance of Pinus densiflora Sieb. et Zucc. (I) -Shear Creep and Mechano-Sorptive Behavior of Drift Pin Jointed Lumber-

  • Hong, Soon-Il;Park, Jun-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.11-18
    • /
    • 2006
  • This study was carried out to evaluate the mechano-sorptive deflection of shear creep of drift pin jointed solid wood. Specimens were the solid wood of Pinus densiflora. The joint was composed with steel plate and drift pin, 85mm in length and 10mm in diameter. The creep tests were conducted under the constant loads in an variable environment. Five different shearing loads were applied parallel to the grain of specimens. The shearing loads applied were 170, 340, 510, 680 and 850 kgf. The stress levels were 10, 20, and 30, 40 and 50% of the bearing strength obtained from the tension-type lateral strength test. The creep tests for specimens were carried out for 10300 hours. A few general conclusions could be drawn from this study: The mechano-sorptive deflection (${\delta}$ ms) is defined as ${\delta}\;ms={\delta}\;t-({\delta}\;c+{\delta}\;sh)-{\delta}\;o$, where ${\delta}$ t is the total deflection, ${\delta}$ c is the pure creep, ${\delta}$ sh is shrinkage-swelling behavior, and ${\delta}$ o is the initial deflection. Changes of relative humidity may cause more severe creep deflection than those of constant humidity, especially during the drying process. The mechano-sorptive behaviors of specimens, except the effects of shrinkage and swelling, gradually increased with increasing time. The deflection is increased in desorption process and recovered in adsorption process. The deflections of drift pin jointed solid wood under different loads showed almost same tendency in all specimens. Although the creep deflection tendencies of each series are very similar, the specimens subjected to a large shearing load exhibit large creep deflections in the desorption process than do those to the small shearing load specimens.

Case Analysis of Abutment Displacement and Pavement settlement (교대변위 및 도로침하에 대한 사례분석)

  • 박찬호;김수일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.03a
    • /
    • pp.19-30
    • /
    • 1994
  • This paper reports a case study of aboutment displacement and pavement settlement observed at the construction site for highway bridges. The emphasis was on quantifying the horizontal deflections of about and pavement settlement on the backfill surface. It is shown that in soft clay, bridge aboutments on pile foundations are subjected to lateral earth pressures due to lateral soil movement. Based on the results analyzed, the earth pressure was predicted by deflection shape of piles based on the results of a numerical analysis and an analytical study. Also, the long term settlement of soil below pavement was estimated.

  • PDF

Long-term flexural cracking control of reinforced self-compacting concrete one way slabs with and without fibres

  • Aslani, Farhad;Nejadi, Shami;Samali, Bijan
    • Computers and Concrete
    • /
    • v.14 no.4
    • /
    • pp.419-444
    • /
    • 2014
  • In this study experimental result of a total of eight SCC and FRSCC slabs with the same cross-section were monitored for up to 240 days to measure the time-dependent development of cracking and deformations under service loads are presented. For this purpose, four SCC mixes are considered in the test program. This study aimed to compare SCC and FRSCC experimental results with conventional concrete experimental results. The steel strains within the high moment regions, the concrete surface strains at the tensile steel level, deflection at the mid-span, crack widths and crack spacing were recorded throughout the testing period. Experimental results show that hybrid fibre reinforced SCC slabs demonstrated minimum instantaneous and time-dependent crack widths and steel fibre reinforced SCC slabs presented minimum final deflection.

Analytical Modeling for Reinforced Concrete Beam Deflections Using Layered Finite Elements (층상 유한요소를 이용한 철근콘크리트 보의 처짐 해석모델)

  • 최봉섭;권영웅
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.131-137
    • /
    • 1999
  • The use of higher strength materials with the strength methed of design has resulted in more slender member and shallower sections. For this reason, it is necessary to satisfy the requirements of serviceability even though the structural safety is the most important limit state. This paper is only concerned with the control of deflections in the serviceability. In this study, an analytical model is presented to predict the deflections of reinforced concrete beams to given loading and environmental conditions. This model is based on the finite element approach in which a finite element is generally divided into a number of stiffening effect due to cracking, creep and shrinkage. Comparisons are made with available measured deflections reported by others to assess the capability of the layered beam model. The calculated values of instantaneous and long-term deflection show good agreement with experimental results in the range of tension stiffening parameter $\beta$ between 2.5 and 3.0.

Reshoring effects on deflections of multi-shored flat plate systems under construction

  • Kang, Su-Min;Eom, Tae-Sung;Kim, Jae-Yo
    • Structural Engineering and Mechanics
    • /
    • v.45 no.4
    • /
    • pp.455-470
    • /
    • 2013
  • RC flat plates that have no flexural stiffness by boundary beams may be governed by a serviceability as well as a strength condition. A construction sequence and its impact on the distributions of construction loads among slabs tied by shores are decisive factors influencing immediate and long term performances of flat plate. Over-loading and tensile cracking in early-aged slabs significantly increase the deflection of a flat plate system under construction. A reshoring work may be helpful in reducing slab deflections by controlling the vertical distributions of construction loads in a multi-shored flat plate system. In this study, a change of construction loads by reshoring works and its effects on deflections of flat plate systems under construction are analyzed. The slab construction loads with various reshoring schemes are defined by a simplified method, and the practical calculation of slab deflections with considering construction sequences and concrete cracking effects is applied. From parametric studies, the reshoring works are verified to reduce construction loads and slab deflections.

Dynamic Field Test of High-Speed Railway Bridge Considering Temperature (온도를 고려한 고속철도 교량의 진동 실험)

  • Choi, Eun-Suk;Chin, Won-Jong;Lee, Jung-Woo;Kang, Jae-Yoon;Kwark, Jong-Won;Kim, Byung-Suk
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1392-1394
    • /
    • 2007
  • By the examination of data collected by long-term measuring system on high-speed railway bridges, it has been known that the atmospheric temperature may affect the responses of maximum deflection and acceleration of bridge deck. Collected data show a tendency by seasonal factor to that, by the decrease of temperature, the response of acceleration of bridge deck increases, and the response of deflection decreases. To trace the cause of this tendency, parametric analysis on the stiffness of bridge bearing and track ballast has been performed, and the in-site measurement has been achieved in high-speed railway line to understand seasonal influences.

  • PDF

An Experimental Study on the Behavior of RC Beams Externally Bonded with FRPs Under Sustained Loads (지속하중을 받은 FRP 외부부착 보강 철근콘크리트 보의 거동 특성에 관한 실험적 연구)

  • Shim, Jae-Joong;Oh, Kwang-Jin;Kim, Yeon-Tae;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.125-132
    • /
    • 2010
  • In the recent construction industry, an external strengthening method using fiber reinforced polymers has been widely used. Since reinforced concrete structures strengthened with fiber reinforced polymers are always under sustained loads, influence of creep and shrinkage on the structures is inevitable. Due to the creep and shrinkage, behaviors of the structures, such as deflection, deformation, recovery capability, strength and so on are also under the influence of creep and shrinkage. Thus, in order to estimate efficacy, creep recovery and residual strength of FRP strengthened RC beams, long-term flexural experiments and static flexural experiments were carried out. As the result of the experiments, FRP strengthened RC beams were very effective in terms of deflection control. Furthermore, the strengthened beams had higher immediate deformation recovery than immediate deformation. Through the static flexural experiments, it was shown that the CFRP strengthened beam had high residual strength. It seems that the sustained loads did not affect bond and residual strength of the beams.

Creep Behavior of Pultruded Ribbed GFRP Rebar and GFRP Reinforced Concrete Member (인발성형된 이형 GFRP 보강근과 GFRP 보강 콘크리트 부재의 크리프 거동)

  • You, Young-Jun;Park, Young-Hwan;Kim, Hyung-Yeol;Choi, Jin-Won;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.187-194
    • /
    • 2013
  • Fiber reinforced polymer (FRP) has been gathering interest from designers and engineers for its possible usage as a replacement reinforcement of a steel reinforcing bar due to its advantageous characteristics such as high tensile strength, non-corrosive material, etc. Since it is manufactured with various contents ratios, fiber types, and shapes without any general specification, test results for concrete members reinforced with these FRP reinforcing bars could not be systematically used. Moreover, since investigations for FRP reinforced members have mainly focused on short-term behavior, the purpose of this study is to evaluate long-term behaviors of glass FRP (GFRP) reinforcing bar and concrete beams reinforced with GFRP. In this paper, test results of tensile and bond performance of GFRP reinforcing bar and creep behavior are presented. In the creep tests, results showed that 100 years of service time can be secured when sustained load level is below 55% of tensile strength of GFRP reinforcing bar. A modification factor of 0.73 used to calculate long-term deflection of GFRP reinforced beams was acquired from the creep tests for GFRP reinforced concrete beams. It is expected that these test results would give more useful information for design of FRP reinforced members.

Whole-life wind-induced deflection of insulating glass units

  • Zhiyuan Wang;Junjin Liu;Jianhui Li;Suwen Chen
    • Wind and Structures
    • /
    • v.37 no.4
    • /
    • pp.289-302
    • /
    • 2023
  • Insulating glass units (IGUs) have been widely used in buildings in recent years due to their superior thermal insulation performance. However, because of the panel reciprocating motion and fatigue deterioration of sealants under long-term wind loads, many IGUs have the problem of early failure of watertight properties in real usage. This study aimed to propose a statistical method for wind-induced deflection of IGU panels during the whole life service period, for further precise analysis of the accumulated fatigue damage at the sealed part of the edge bond. By the estimation of the wind occurrence regularity based on wind pressure return period, the events of each wind speed interval during the whole life were obtained for the IGUs at 50m height in Beijing, which are in good agreement with the measured data. Also, the wind-induced deflection analysis method of IGUs based on the formula of airspace coefficient was proposed and verified as an improvement of the original stiffness distribution method with the average relative error compared to the test being about 3% or less. Combining the two methods above, the deformation of the outer and inner panes under wind loads during 30 years was precisely calculated, and the deflection and stress state at selected locations were obtained finally. The results show that the compression displacement at the secondary sealant under the maximum wind pressure is close to 0.3mm (strain 2.5%), and the IGUs are in tens of thousands of times the low amplitude tensile-compression cycle and several times to dozens of times the relatively high amplitude tensile-compression cycle environment. The approach proposed in this paper provides a basis for subsequent studies on the durability of IGUs and the wind-resistant behaviors of curtain wall structures.

Long-term shape sensing of bridge girders using automated ROI extraction of LiDAR point clouds

  • Ganesh Kolappan Geetha;Sahyeon Lee;Junhwa Lee;Sung-Han Sim
    • Smart Structures and Systems
    • /
    • v.33 no.6
    • /
    • pp.399-414
    • /
    • 2024
  • This study discusses the long-term deformation monitoring and shape sensing of bridge girder surfaces with an automated extraction scheme for point clouds in the Region Of Interest (ROI), invariant to the position of a Light Detection And Ranging system (LiDAR). Advanced smart construction necessitates continuous monitoring of the deformation and shape of bridge girders during the construction phase. An automated scheme is proposed for reconstructing geometric model of ROI in the presence of noisy non-stationary background. The proposed scheme involves (i) denoising irrelevant background point clouds using dimensions from the design model, (ii) extracting the outer boundaries of the bridge girder by transforming and processing the point cloud data in a two-dimensional image space, (iii) extracting topology of pre-defined targets using the modified Otsu method, (iv) registering the point clouds to a common reference frame or design coordinate using extracted predefined targets placed outside ROI, and (v) defining the bounding box in the point clouds using corresponding dimensional information of the bridge girder and abutments from the design model. The surface-fitted reconstructed geometric model in the ROI is superposed consistently over a long period to monitor bridge shape and derive deflection during the construction phase, which is highly correlated. The proposed scheme of combining 2D-3D with the design model overcomes the sensitivity of 3D point cloud registration to initial match, which often leads to a local extremum.