• 제목/요약/키워드: Long-Term Potentiation

검색결과 49건 처리시간 0.022초

Developmental Switch of the Serotonergic Role in the Induction of Synaptic Long-term Potentiation in the Rat Visual Cortex

  • Park, Sung-Won;Jang, Hyun-Jong;Cho, Kwang-Hyun;Kim, Myung-Jun;Yoon, Shin-Hee;Rhie, Duck-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권1호
    • /
    • pp.65-70
    • /
    • 2012
  • Synaptic long-term potentiation (LTP) and long-term depression (LTD) have been studied as mechanisms of ocular dominance plasticity in the rat visual cortex. Serotonin (5-hydroxytryptamine, 5-HT) inhibits the induction of LTP and LTD during the critical period of the rat visual cortex (postnatal 3~5 weeks). However, in adult rats, the increase in 5-HT level in the brain by the administration of the selective serotonin reuptake inhibitor (SSRI) fluoxetine reinstates ocular dominance plasticity and LTP in the visual cortex. Here, we investigated the effect of 5-HT on the induction of LTP in the visual cortex obtained from 3- to 10-week-old rats. Field potentials in layer 2/3, evoked by the stimulation of underlying layer 4, was potentiated by theta-burst stimulation (TBS) in 3- and 5-weekold rats, then declined to the baseline level with aging to 10 weeks. Whereas 5-HT inhibited the induction of LTP in 5-week-old rats, it reinstated the induction of N-methyl-D-aspartate receptor (NMDA)-dependent LTP in 8- and 10-week-old rats. Moreover, the selective SSRI citalopram reinstated LTP. The potentiating effect of 5-HT at 8 weeks of age was mediated by the activation of 5-$HT_2$ receptors, but not by the activation of either 5-$HT_{1A}$ or 5-$HT_3$ receptors. These results suggested that the effect of 5-HT on the induction of LTP switches from inhibitory in young rats to facilitatory in adult rats.

결명자 에탄올 추출물이 알코올로 유도로 유도한 기억 장애에 미치는 영향 (Effect of an Ethanol Extract of Cassia obtusifolia Seeds on Alcohol-induced Memory Impairment)

  • 권희영;조은비;전지은;이영춘;김동현
    • 생명과학회지
    • /
    • 제29권5호
    • /
    • pp.564-569
    • /
    • 2019
  • 최근 알코올 소비량이 증가함에 따라 과량의 에탄올을 섭취하는 경우 또한 늘어나고 있다. 이런 과도한 에탄올 섭취는 ${\gamma}$-aminobutyric acid (GABA) 수용체의 활성화와 glutamate 수용체의 활성 억제를 통해 신경계를 교란시켜 단기 기억 형성을 방해 한다. 알코올에 의한 인지기능의 저하는 알코올성 black out을 유도할 수 있으며, 반복될 경우 알코올성 치매로 이어질 수 있기 때문에 black out을 예방하는 치료제의 개발이 필요하다. 따라서 본 연구자는 해당 연구를 통하여 Cassia obtusifolia seeds 에탄올 추출물(COE)이 가진 black out 예방제로써의 가능성을 평가하였다. 본 연구에서는 에탄올에 의해 유도된 기억 장애에 대한 COE의 효과를 확인하였다. 실험 동물의 기억력을 측정하기 위하여 수동 회피 실험과 Y자 미로 실험을 수행하였고, 마우스 해마 절편을 사용하여 에탄올이 기억의 형성과 관련하여 장기 강화(long term potentiation; LTP)에 어떠한 영향을 끼치는지 전기생리학을 통해 확인하였다. 또한 ${\alpha}$-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 수용체 길항제인 NBQX ($50{\mu}M$)를 사용하여 에탄올에 의한 인지기능 장애와 관련이 있다고 알려진 N-Methyl-D-aspartate (NMDA) 매개 field 흥분성 시냅스 후 전위를 측정하였다. 결과적으로, COE는 에탄올에 의한 기억력의 손상을 방지하였고, 해마 절편에서 에탄올에 의해 감소된 LTP와 NMDA 매개 흥분성 시냅스 후 전위를 대조군과 비슷한 수준까지 회복시켰다.

흰쥐 해마 CA1 영역에서 H2O2에 의한 장기강화 억제에 대한 발효황금 추출물의 효과 (Effects of Fermented Scutellaria Baicalensis Extract on H2O2 - Induced Impairment of Long-term Potentiation in Hippocampal CA1 Area of Rats)

  • 허준호;;김민선
    • 동의생리병리학회지
    • /
    • 제33권6호
    • /
    • pp.356-362
    • /
    • 2019
  • Scutellaria baicalensis (SB) has widely used in the treatment for various brain diseases in the field of Oriental medicine. Biofermantation of SB can make major chemical constituents of SB to pass blood-brain barrier easily and to have more potent anti-oxidant ability. There is a little information about the contribution of fermented SB (FSB) to the formation or maintenance of the neural plasticity in the hippocampus. The purpose of this study was to evaluate effects of FSB extract on hydrogen peroxide (H2O2) - induced impairments of the induction and maintenance of long-term potentiation (LTP), an electrophysiological marker for the neural plasticity in the hippocampus. From hippocampal slices of rats, the field excitatory postsynaptic potentials (fEPSPs) were evoked by the electrical stimulation to the Schaffer collaterals - commissural fibers in the CA1 areas and LTP by theta-burst stimulation by using 64 - channels in vitro multi-extracellular recording system. In order to induce oxidative stress to hippocampal slices two different concentrations (200, 400 μM) of H2O2 were given to the perfused aCSF before and after the LTP induction, respectively. The ethanol extract of FBS with concentration of 25 ㎍/ml, 50 ㎍/ml was diluted in perfused aCSF that had 200 μM H2O2, respectively. Oxidative stress by the treatment of H2O2 resulted in decrease of the induction rate of LTP in the CA1 area with a dose - dependent manner. However, the ethanol extract of FSB prevented the reduction of the induction rate of LTP caused by H2O2 - induced oxidative stress with a dose - dependent manner. These results may support a potential application of FSB to ameliorate impairments of hippocampal dependent neural plasticity or memory caused by oxidative stress.

수국 추출물이 알코올로 유도한 기억 장애 및 long-term potentiation 억제에 미치는 영향 (Effect of the Extract of Hydrangea Dulcis Folium on Alcohol-induced Psychiatric Deficits)

  • 김동현;박혜진;정지욱;이승헌
    • 생명과학회지
    • /
    • 제27권3호
    • /
    • pp.355-360
    • /
    • 2017
  • 다량의 에탄올을 섭취하면 기억 상실로 이어질 수 있으며, 종종 blackout으로 나타난다. Blackout의 불균형은 알코올 소비에 있어 다양한 사회 문제의 주요 원인이 될 수 있다. 그러나 이러한 알코올 유발 문제를 예방하는 치료법은 아직 존재하지 않는다. Hydrangeae dulcis folium은 Hydrangea serrata Seringe의 잎을 발효가공을 통해 만든 민간약 또는 차이다. 본 연구에서는 에탄올로 유도한 정신적 결핍에 대한 Hydrangeae dulcis folium의 에탄올 추출물(EHDF)의 효과를 평가하였다. 행동적 결핍 또는 장애를 테스트하기 위해 마우스에서 물체 인식 테스트가 수행하였다. 또한 시냅스 결손을 평가하기 위해, 마우스 해마 조각에서 에탄올에 취약한 것으로 알려져 있고 에탄올로 유발한 기억 상실과 관련이 있는 N-methyl-D-aspartate (NMDA) 수용체-매개 흥분성 시냅스 후 전위 및 long-term potentiation (LTP)을 측정하였다. 본 연구에서 에탄올(1 g/kg, i.p.)은 물체 인식 메모리를 손상 시켰지만, EHDF (10 또는 30 mg/kg)는 물체 인식 테스트에서 이러한 장애를 극복하였다. 흥미롭게도, EHDF ($30{\mu}g/ml$)는 해마 절편에서 에탄올 처리 후 억제되었던 LTP 및 NMDA 수용체 매개 시냅스 전달을 유의하게 개선시켰다. EHDF는 에탄올에 의해 유발된 물체 인식 기억력 결핍을 개선하였고, 또한 EHDF는 해마 절편에서 에탄올 유도성 LTP 및 NMDA 수용체 매개성 시냅스 전달을 상당히 개선시켰다.

Spatial Information Processing between Hippocampus and Prefrontal cortex: a Hypothesis Based on Anatomy and Physiology

  • Jung, Min-Whan
    • Animal cells and systems
    • /
    • 제2권1호
    • /
    • pp.65-69
    • /
    • 1998
  • The hippocampus and prefrontal cortex are regarded as the highest-order association cortices. The hippocampus has been proposed to store "cognitive maps" of external environments, and the prefrontal cortex is known to be involved in the planning of behavior, among other functions. Considering the prominent functional roles played by these structures, it is not surprising to find direct monosynaptic projections from the hippocampus to the prefrontal cortex. Rhythmic stimulation of this projection patterned after the hippocampal EEG theta rhythm induced stable long-term potentiation of field potentials in the prefrontal cortex. Comparison of behavioral correlates of hippocampal and prefrontal cortical neurons during an a-arm radial maze, working memory task shows a striking contrast. Hippocampal neurons exhibit clear place-specific firing patterns, whereas prefrontal cortical neurons do not show spatial selectivity, but are correlated to different stages of the behavioral task. These data lead to the hypothesis that the role of hippocampal projection to the prefrontal cortex is not to impose spatial representations upon prefrontal activity, but to provide a mechanism for learning the spatial context in which particular behaviors are appropriate.propriate.

  • PDF

Salvia miltiorrhiza Bunge Blocks Ethanol-Induced Synaptic Dysfunction through Regulation of NMDA Receptor-Dependent Synaptic Transmission

  • Park, Hye Jin;Lee, Seungheon;Jung, Ji Wook;Lee, Young Choon;Choi, Seong-Min;Kim, Dong Hyun
    • Biomolecules & Therapeutics
    • /
    • 제24권4호
    • /
    • pp.433-437
    • /
    • 2016
  • Consumption of high doses of ethanol can lead to amnesia, which often manifests as a blackout. These blackouts experienced by ethanol consumers may be a major cause of the social problems associated with excess ethanol consumption. However, there is currently no established treatment for preventing these ethanol-induced blackouts. In this study, we tested the ethanol extract of the roots of Salvia miltiorrhiza (SM) for its ability to mitigate ethanol-induced behavioral and synaptic deficits. To test behavioral deficits, an object recognition test was conducted in mouse. In this test, ethanol (1 g/kg, i.p.) impaired object recognition memory, but SM (200 mg/kg) prevented this impairment. To evaluate synaptic deficits, NMDA receptor-mediated excitatory postsynaptic potential (EPSP) and long-term potentiation (LTP) in the mouse hippocampal slices were tested, as they are known to be vulnerable to ethanol and are associated with ethanol-induced amnesia. SM (10 and $100{\mu}g/ml$) significantly ameliorated ethanol-induced long-term potentiation and NMDA receptor-mediated EPSP deficits in the hippocampal slices. Therefore, these results suggest that SM prevents ethanol-induced amnesia by protecting the hippocampus from NMDA receptor-mediated synaptic transmission and synaptic plasticity deficits induced by ethanol.

Enhancement of GluN2B Subunit-Containing NMDA Receptor Underlies Serotonergic Regulation of Long-Term Potentiation after Critical Period in the Rat Visual Cortex

  • Joo, Kayoung;Rhie, Duck-Joo;Jang, Hyun-Jong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권6호
    • /
    • pp.523-531
    • /
    • 2015
  • Serotonin [5-hydroxytryptamine (5-HT)] regulates synaptic plasticity in the visual cortex. Although the effects of 5-HT on plasticity showed huge diversity depending on the ages of animals and species, it has been unclear how 5-HT can show such diverse effects. In the rat visual cortex, 5-HT suppressed long-term potentiation (LTP) at 5 weeks but enhanced LTP at 8 weeks. We speculated that this difference may originate from differential regulation of neurotransmission by 5-HT between the age groups. Thus, we investigated the effects of 5-HT on apha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-, ${\gamma}$-aminobutyric acid receptor type A (GABAAR)-, and N-methyl-D-aspartic acid receptor (NMDAR)-mediated neurotransmissions and their involvement in the differential regulation of plasticity between 5 and 8 weeks. AMPAR-mediated currents were not affected by 5-HT at both 5 and 8 weeks. GABAAR-mediated currents were enhanced by 5-HT at both age groups. However, 5-HT enhanced NMDAR-mediated currents only at 8 weeks. The enhancement of NMDAR-mediated currents appeared to be mediated by the enhanced function of GluN2B subunit-containing NMDAR. The enhanced GABAAR- and NMDAR-mediated neurotransmissions were responsible for the suppression of LTP at 5 weeks and the facilitation of LTP at 8 weeks, respectively. These results indicate that the effects of 5-HT on neurotransmission change with development, and the changes may underlie the differential regulation of synaptic plasticity between different age groups. Thus, the developmental changes in 5-HT function should be carefully considered while investigating the 5-HT-mediated metaplastic control of the cortical network.

Hippocampus-dependent cognitive enhancement induced by systemic gintonin administration

  • Kim, Sungmin;Kim, Min-Soo;Park, Kwanghoon;Kim, Hyeon-Joong;Jung, Seok-Won;Nah, Seung-Yeol;Han, Jung-Soo;Chung, ChiHye
    • Journal of Ginseng Research
    • /
    • 제40권1호
    • /
    • pp.55-61
    • /
    • 2016
  • Background: A number of neurological and neurodegenerative diseases share impaired cognition as a common symptom. Therefore, the development of clinically applicable therapies to enhance cognition has yielded significant interest. Previously, we have shown that activation of lysophosphatidic acid receptors (LPARs) via gintonin application potentiates synaptic transmission by the blockade of $K^+$ channels in the mature hippocampus. However, whether gintonin may exert any beneficial impact directly on cognition at the neural circuitry level and the behavioral level has not been investigated. Methods: In the current study, we took advantage of gintonin, a novel LPAR agonist, to investigate the effect of gintonin-mediated LPAR activation on cognitive performances. Hippocampus-dependent fear memory test, synaptic plasticity in the hippocampal brain slices, and quantitative analysis on synaptic plasticity-related proteins were used. Results: Daily oral administration of gintonin for 1 wk significantly improved fear memory retention in the contextual fear-conditioning test in mice.We also found that oral administration of gintonin for 1 wk increased the expression of learning and memory-related proteins such as phosphorylated cyclic adenosine monophosphate-response element binding (CREB) protein and brain-derived neurotrophic factor (BDNF). In addition, prolonged gintonin administration enhanced long-term potentiation in the hippocampus. Conclusion: Our observations suggest that the systemic gintonin administration could successfully improve contextual memory formation at the molecular and synaptic levels as well as the behavioral level. Therefore, oral administration of gintonin may serve as an effective noninvasive, nonsurgical method of enhancing cognitive functions.