• 제목/요약/키워드: Long-Span Structure

검색결과 249건 처리시간 0.034초

Large eddy simulation of wind loads on a long-span spatial lattice roof

  • Li, Chao;Li, Q.S.;Huang, S.H.;Fu, J.Y.;Xiao, Y.Q.
    • Wind and Structures
    • /
    • 제13권1호
    • /
    • pp.57-82
    • /
    • 2010
  • The 486m-long roof of Shenzhen Citizens Centre is one of the world's longest spatial lattice roof structures. A comprehensive numerical study of wind effects on the long-span structure is presented in this paper. The discretizing and synthesizing of random flow generation technique (DSRFG) recently proposed by two of the authors (Huang and Li 2008) was adopted to produce a spatially correlated turbulent inflow field for the simulation study. The distributions and characteristics of wind loads on the roof were numerically evaluated by Computational Fluid Dynamics (CFD) methods, in which Large Eddy Simulation (LES) and Reynolds Averaged Navier-Stokes Equations (RANS) Model were employed. The main objective of this study is to explore a useful approach for estimations of wind effects on complex curved roof by CFD techniques. In parallel with the numerical investigation, simultaneous pressure measurements on the entire roof were made in a boundary layer wind tunnel to determine mean, fluctuating and peak pressure coefficient distributions, and spectra, spatial correlation coefficients and probability characteristics of pressure fluctuations. Numerical results were then compared with these experimentally determined data for validating the numerical methods. The comparative study demonstrated that the LES integrated with the DSRFG technique could provide satisfactory prediction of wind effects on the long-span roof with complex shape, especially on separation zones along leading eaves where the worst negative wind-induced pressures commonly occur. The recommended LES and inflow turbulence generation technique as well as associated numerical treatments are useful for structural engineers to assess wind effects on a long-span roof at its design stage.

Control strategy of the lever-type active multiple tuned mass dampers for structures

  • Li, Chunxiang;Han, Bingkang
    • Wind and Structures
    • /
    • 제10권4호
    • /
    • pp.301-314
    • /
    • 2007
  • The lever-type active multiple tuned mass dampers (LT-AMTMD), consisting of several lever-type active tuned mass dampers (LT-ATMD), is proposed in this paper to attenuate the vibrations of long-span bridges under the excitation directly acting on the structure, rather than through the base. With resorting to the derived analytical-expressions for the dynamic magnification factors of the LT-AMTMD structure system, the performance assessment then is conducted on the LT-AMTMD with the identical stiffness and damping coefficient but unequal mass. Numerical results indicate that the LT-AMTMD with the actuator set at the mass block can provide better effectiveness in reducing the vibrations of long-span bridges compared to the LT-AMTMD with the actuator set at other locations. An appealing feature of the LT-AMTMD with the actuator set at the mass block is that the static stretching of the spring may be freely adjusted in accordance with the practical requirements through changing the location of the support within the viable range while maintaining the same performance (including the same stroke displacement). Likewise, it is shown that the LT-AMTMD with the actuator set at the mass block can further ameliorate the performance of the lever-type multiple tuned mass dampers (LT-MTMD) and has higher effectiveness than a single lever-type active tuned mass damper (LT-ATMD). Therefore, the LT-AMTMD with the actuator set at the mass block may be a better means of suppressing the vibrations of long-span bridges with the consequence of not requiring the large static stretching of the spring and possessing a desirable robustness.

돔형 공간 구조물의 Rise-span 비에 따른 불안정 거동 특성에 관한 연구 (A Study on the Unstable behavior According to rise-span ratio of dome type space frame)

  • 손수덕;김승덕;강문명
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2004년도 춘계 학술발표회 논문집 제1권1호(통권1호)
    • /
    • pp.75-82
    • /
    • 2004
  • Many researcher's efforts have made a significant advancement of space frame structure with various portion, and it becomes the most outsanding one of space structures. However, with the characteristics of thin and long term of spacing, the unstable behavior of space structure is shown by initial imperfection, erection procedure or joint, especially space frame structure represents more. This kind of unstable problem could not be set up clearly and there is a huge difference between theory and experiment. Moreover, the discrete structure such as space frame has more complex solution, this it is not easy to derive the formulation of design about space structure. In this space frame structure, the character of rise-span ratio or load mode is represented by the instability of space frame structure with initial imperfection, and snap-through or bifurcation might be the main phenomenon. Therefore, in this study, space frame structure which has a lot of aesthetic effect and profitable for large space covering single layer is dealt. And because that the unstable behavior due to variation of inner force resistance in the elastic range is very important collapse mechanism, I would like to investigate unstable character as a nonlinear behavior with a geometric nonlinear. In order to study the instability. I derive tangent stiffness matrix using finite element method and with displacement incremental method perform nonlinear analysis of unit space structure, star dome and 3-ring star dome considering rise-span $ratio(\mu}$ and load $ratio(R_L)$ for analyzing unstable phenomenon.

  • PDF

Nonlinear dynamic response analysis of a long-span suspension bridge under running train and turbulent wind

  • Wang, S.Q.;Xia, H.;Guo, W.W.;Zhang, N.
    • Interaction and multiscale mechanics
    • /
    • 제3권4호
    • /
    • pp.309-320
    • /
    • 2010
  • With taking the geometric nonlinearity of bridge structure into account, a framework is presented for predicting the dynamic responses of a long-span suspension bridge subjected to running train and turbulent wind. The nonlinear dynamic equations of the coupled train-bridge-wind system are established, and solved with the Newmark numerical integration and direct interactive method. The corresponding linear and nonlinear processes for solving the system equation are described, and the corresponding computer codes are written. The proposed framework is then applied to a schemed long-span suspension bridge with the main span of 1120 m. The whole histories of the train passing through the bridge under turbulent wind are simulated, and the dynamic responses of the bridge are obtained. The results demonstrate that the geometric nonlinearity does not influence the variation tendency of the bridge displacement histories, but the maximum responses will be changed obviously; the lateral displacement of bridge are more sensitive to the wind than the vertical ones; compared with wind velocity, train speed affects the vertical maximum responses a little more clearly.

Seismic damage of long span steel tower suspension bridge considering strong aftershocks

  • Xie, X.;Lin, G.;Duan, Y.F.;Zhao, J.L.;Wang, R.Z.
    • Earthquakes and Structures
    • /
    • 제3권5호
    • /
    • pp.767-781
    • /
    • 2012
  • The residual capacity against collapse of a main shock-damaged bridge can be coupled with the aftershock ground motion hazard to make an objective decision on its probability of collapse in aftershocks. In this paper, a steel tower suspension bridge with a main span of 2000 m is adopted for a case-study. Seismic responses of the bridge in longitudinal and transversal directions are analyzed using dynamic elasto-plastic finite displacement theory. The analysis is conducted in two stages: main shock and aftershocks. The ability of the main shock-damaged bridge to resist aftershocks is discussed. Results show that the damage caused by accumulated plastic strain can be ignored in the long-span suspension bridge. And under longitudinal and transversal seismic excitations, the damage is prone to occur at higher positions of the tower and the shaft-beam junctions. When aftershocks are not large enough to cause plastic strain in the structure, the aftershock excitation can be ignored in the seismic damage analysis of the bridge. It is also found that the assessment of seismic damage can be determined by superposition of damage under independent action of seismic excitations.

Statistical characteristics of sustained wind environment for a long-span bridge based on long-term field measurement data

  • Ding, Youliang;Zhou, Guangdong;Li, Aiqun;Deng, Yang
    • Wind and Structures
    • /
    • 제17권1호
    • /
    • pp.43-68
    • /
    • 2013
  • The fluctuating wind induced vibration is one of the most important factors which has been taken into account in the design of long-span bridge due to the low stiffness and low natural frequency. Field measurement characteristics of sustained wind on structure site can provide accurate wind load parameters for wind field simulation and structural wind resistance design. As a suspension bridge with 1490 m main span, the Runyang Suspension Bridge (RSB) has high sensitivity to fluctuating wind. The simultaneous and continuously wind environment field measurement both in mid-span and on tower top is executed from 2005 up to now by the structural health monitoring system installed on this bridge. Based on the recorded data, the wind characteristic parameters, including mean wind speed, wind direction, the turbulence intensity, the gust factors, the turbulence integral length, power spectrum and spatial correlation, are analyzed in detail and the coherence functions of those parameters are evaluated using statistical method in this paper. The results indicate that, the turbulence component of sustain wind is larger than extremely strong winds although its mean wind speed is smaller; the correlation between turbulence parameters is obvious; the power spectrum is special and not accord with the Simiu spectrum and von Karman spectrum. Results obtained in this study can be used to evaluate the long term reliability of the Runyang Suspension Bridge and provide reference values for wind resistant design of other structures in this region.

GNSS를 활용한 초장대 현수교의 거동 특성 분석 (Behavior Character Analysis of Super Long Suspension Bridge using GNSS)

  • 박제성;홍승환;김미경;김태훈;손홍규
    • 대한원격탐사학회지
    • /
    • 제35권5_2호
    • /
    • pp.831-840
    • /
    • 2019
  • 최근 장대교량의 경간장이 길어지면서 주탑간 거리(span)가 기존의 한계를 넘는 교량에 대해 초장대교량이라는 개념이 새롭게 제시되었다. 또한 장대교량의 구조가 복잡해지고, 안전성이 중요해지면서 시공 중 계측의 필요성이 더욱 커졌다. 하지만 장대교량에 기존 계측센서를 지속적으로 적용하는 데는 한계가 있다. 이에 기존 계측센서들의 한계를 보완하고자 위성항법시스템(GNSS: Global Navigation Satellite System)을 활용하기 위한 연구가 진행되고 있다. 본 연구는 최종적으로 2축경사계, 변형률계, 풍향풍속계와 GNSS를 혼용하여 초장대현수교의 거동 특성을 파악하고, 세부 모니터링 방법을 제시하고자 하였다. 이를 위해 GNSS를 이용하여 주탑의 절대좌표와 교축진행방향을 산출하였고, 장기거동을 분석하여 시공 직후 주탑의 영구 변위와 안정화 여부를 평가하였다. 또한 풍향이 대상교량의 거동에 미치는 영향을 수치적으로 나타냈으며, 이를 통해 대상교량의 거동특성을 분석하였다. 본 연구 결과, GNSS를 활용한 교량 계측은 분석 목적에 따라 데이터 처리가 용이한 것으로 나타났다. 또한, 초장대교량의 유지관리에 있어 기존의 계측센서와 GNSS을 활용한다면 각 계측 데이터의 오차 파악 및 보정을 통한 모니터링 시스템의 개선과 정확한 변위관측, 그리고 거동특성을 함께 파악하는 효과적인 모니터링 시스템을 구축 할 수 있다는 점을 확인할 수 있었다.

국내최장 고속철도 정지고가(L=9.3km) 교량형식 개발 및 설계 - 35m PSM PSC Box교, 80m 3경간 Arch교, 국내최초 ED교 - (The Planning and Design of Jeong-Ji High Speed Railway Bridge)

  • 장인호;박경호;박종화;김영남;김선필
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1691-1696
    • /
    • 2010
  • Jeong-Ji overbridge is designed to be 9.3km long, the longest for a high speed railway bridge ever constructed in Korea. This bridge is constituted of three types of structure. Standard type bridge is 35m PSC Box bridge which will be constructed by Precast Span Method. To cross the Cheonan Nonsan Expressway, 80m three-span steel arch bridge is designed to avoid rail expansion joint. Finally, Extradosed bridge is planned for high speed railway bridge for the first time in Korea based on originative and advanced design techniques. It is expected that this will contribute to the development of national technology for long-span high speed railway bridges.

  • PDF

A comparative study of numerical methods for fluid structure interaction analysis in long-span bridge design

  • Morgenthal, Guido;McRobie, Allan
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.101-114
    • /
    • 2002
  • Both a Finite Volume and a Discrete Vortex technique to solve the unsteady Navier-Stokes equations have been employed to study the air flow around long-span bridge decks. The implementation and calibration of both methods is described alongside a quasi-3D extension added to the DVM solver. Applications to the wind engineering of bridge decks include flow simulations at different angles of attack, calculation of aerodynamic derivatives and fluid-structure interaction analyses. These are being presented and their specific features described. If a numerical method shall be employed in a practical design environment, it is judged not only by its accuracy but also by factors like versatility, computational cost and ease of use. Conclusions are drawn from the analyses to address the question of whether computer simulations can be practical design tools for the wind engineering of bridge decks.

구 동양척식주식회사 부산지점(부산근대역사관)의 복합구조 특성 (The Composite Structure Characteristics of the Formerly the Busan Branch of Toyo Takushoku Co.(Busan Modern History Museum))

  • 안재철
    • 대한건축학회논문집:계획계
    • /
    • 제35권10호
    • /
    • pp.63-70
    • /
    • 2019
  • The Busan branch of the former Toyo Takushoku Co. carried out the same business as a bank at the time of construction. This required an open space of long-span, which had no pillars, on the first floor where many customers frequently visited. In addition, an office space is required in the upper part, and a column is arranged so as to place a corridor in the center. It was designed with modern complex structures for space utilization and structural adaptation. As a result, scientific structural calculations of the modern era began and various structural technologies were introduced, the rationalization and value of various spatial characteristics and their structural design were analyzed from a technical historical perspective in the structure requiring long-span space. The Busan branch of the former Toyo Takushoku Co. is a complex structure with three structures. It is highly valuable as a building that tried to design its structure in a variety of spaces through calculation and introduction of new technology based on the principle of force in modern times.