• Title/Summary/Keyword: Long-Span Structure

Search Result 250, Processing Time 0.027 seconds

Case Study on the Explosive Demolition of the KOGAS Office Building in Bundang District (한국가스공사 분당사옥 발파해체 시공사례)

  • Kim, Sang-min;Park, Keun-sun;Son, Byung-min;Kim, Ho-jun;Kim, Hee-do;Kim, Gab-soo
    • Explosives and Blasting
    • /
    • v.36 no.4
    • /
    • pp.48-61
    • /
    • 2018
  • This case study is concerned with the project of the explosive demolition for the KOGAS office building located in Bundang district in Seongnam city. Since the office building was a kind of long-span beam structures, a mechanical demolition method using jacking support systems was considered in the beginning of the project. With consideration of the excessive reinforcement cost, uncertainty of safety, and prolonged construction period, however, the original plan was later changed to use an explosive demolition method. For the purpose of protecting nearby buildings and facilities during the collapse process, the explosive initiation sequence was elaborately designed to bring down the building structure towards its front left corner. A total of over 550 electronic detonators (Unitronic 600) was used to sequentially initiate the explosives installed at appropriate columns in the first, second, and fifth floors. To diminish dust production, water bags of small and large sizes were respectively installed at each column and on the floors to be blasted. As such, every effort was exercised to mitigate overall noise, dust, and shock vibrations that could be generated during the explosive demolition process for the office building.

Beam-Column Connection with 1200mm Deep Multi-Reduced Taper Beam for Intermediate Moment Frame (깊이 1200mm급 변단면보의 중간모멘트골조용 내진접합부 개발)

  • Jung, Si-Hwa;Alemayehe, Robel Wondimu;Park, Man-Woo;Ju, Young-Kyu
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.4
    • /
    • pp.135-146
    • /
    • 2019
  • Deep beam has high section modules compared with shallow beam of the same weight. However, deep beam has low rotational capacity and high possibility of brittle failure so it is not possible to apply deep beams with a long span to intermediate moment frames, which should exhibit a ductility of 0.02rad of a story drift angle of steel moment frames. Accordingly, KBC and AISC limit the beam depth for intermediate and special moment frame to 750mm and 920mm respectively. The purpose of this paper is to improve the seismic performance of intermediate moment frame with 1200mm depth beam. In order to enhance vulnerability of plastic deformation capacity of deeper beam, Multi-Reduced Taper Beam(MRTB) shape that thickness of beam flange is reinforced and at the same time some part of the beam flange width is weakened are proposed. Based on concept of multiple plastic hinge, MRTB is intended to satisfy the rotation requirement for intermediate moment frame by dividing total story drift into each hinge and to prevent the collapse of the main members by inducing local buckling and fracture at the plastic hinge location far away from connection. The seismic performance of MRTB is evaluated by cyclic load test with conventional connections type WUF-W, RBS and Haunch. Some of the proposed MRTB connection satisfies connection requirements for intermediate moment frame and shows improved the seismic performance compared to conventional connections.

Construction Stage Analysis of Hybrid Composite Cable-Stayed Girder Bridge Using Eccentrically Loaded Derrick Crane (편중 가능한 사장교 가설용 데릭 크레인을 이용한 합성형 복합 사장교 시공 단계 해석)

  • Park, Taekwun;Kim, Moon Kyum;Won, Jong Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.277-286
    • /
    • 2010
  • Derrick or caterpillar crane is generally used for the long-span/cable-stayed bridge construction by pre-cast segment lifting from over-land or water transportation. The heavy weight of them, however, could make defects on unstable under-construction structure and, furthermore a method of conventional segment transportation is also able to occur additional time and cost. In this study, in order to improve conventional construction method, the newly developed derrick crane is mainly considered. It could be not only eccentrically loadable on constructing girder but having rotatable boom for segment transportation from back-side. A series of construction stage using developed derrick crane is defined and also its numerical analysis is conducted. To reflect load characteristics of developed derrick crane on construction stage analysis, on/out of service load is separately calculated by considering vertical/lateral rotation range of boom and it is loaded on 4 fixed positions of crane. The derrick crane on this study could be time and cost saving solution for cable-stayed bridge construction and also make contributions to construction load reduction in its process.

Uniaxial and Biaxial Flexural Strength of Plain Concrete using Optimum Specimen Configuration (최적실험체 제원에 의한 콘크리트의 일축 및 이축 휨인장강도)

  • Oh, Hongseob;Zi, Goangseup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.185-191
    • /
    • 2010
  • Because the concrete crack that is the reason of the serviceability and durability degradation of concrete structure can be arisen from either the stress magnitude and gradient or other structural and material defects, the crack strength of concrete is hard to accurately evaluate. Especially, stress-state in concrete plate components such as rigid pavement and long span slab is biaxial flexure stress, and the flexural strength of those component may be different than the traditional rupture modulus of concrete subjected to uniaxial stress. In this study, an experimental investigation to assess of mechanical behavior under uniaxial and biaxial flexure stress is conducted and the proposed optimum specimen configuration is adopted. From the test, the modulus of rupture under uniaxial and biaxial stress are decreased as the size of aggregate or specimen is larger. And biaxial flexure strength of concrete specimens is varied from 39.5 to 99.2% as compared with that of uniaxial strength, and the biaxial strength of specimen with 20mm aggregate size is only 76% of uniaxial strength.

Compensation of WDM Signal Distortion through Non-midway Optical Phase Conjugation and Dispersion Maps of Asymmetric Structure (Non-midway 광 위상 공액과 비대칭 구조의 분산 맵을 통한 WDM 신호의 왜곡 보상)

  • Seong-Real Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.855-860
    • /
    • 2023
  • Long-haul transmission of multiple transmission signals, such as wavelength division multiplexed (WDM), has became possible, because the signal distortion caused by chromatic dispersion and nonlinearity can be compensated by applying dispersion management, optical phase conjugation and combination of the two methods into the transmission link. The biggest obstacle to applying optical phase conjugation to an optical link is that the optical phase conjugator (OPC) must be located only in the middle of the entire transmission line. This paper shows that the location constraints of OPC can be overcome through the application of an asymmetric dispersion map. The location of the OPC considered in this paper exists between the 8th and 9th fiber spans out of a total of 48 fiber spans. Additionally, the dispersion map has an asymmetric cumulative dispersion profile with respect to the OPC. As a result of the simulation, it was confirmed that the distortion compensation effect of the WDM channel can be increased compared to the link to which the traditional dispersion map is applied, depending on the overall shape of the cumulative dispersion profile distribution of the proposed asymmetric dispersion map and the selection of the profile slope.

An Experimental study on the Structural Performance by the Depth Variation of Capacity of U-shaped composite Beam (U-형 복합보의 춤 변화에 따른 구조성능에 관한 실험적 연구)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.111-118
    • /
    • 2020
  • The U-shaped composite beam used in this study consist of a reinforced concrete structure, a beam steel structure supporting the slab, a reinforced concrete structure, and a U-shaped steel plate. The U-shaped composite beam was developed for the purpose of using it as a parking lot because it is highly constructible and has low floor height and long span. For the improvement of constructivity, the U-shaped composite beam ends are planned with standardized H-shaped steel and connected directly to the columns, and the middle of the U-shaped composite beam consists of U-shaped steel plates folded in U-shaped form using thin steel plates (t=6) instead of H-shaped steel. In the middle of the composite beam, where U-shaped steel plates are located, the depth of U-shaped beam may be planned to be small so as to satisfy the height limit of the parking lot. It is important to grasp the structural performance according to the change of depth because low beam depth is advantageous for the reduction of the floor height, but it is a inhibitor to the structural behaviors of U-shaped composite beam. In addition, since U-shaped composite beams are a mixture of steel frame structures, reinforced concrete structures and U-shaped steel plates, securing unity has a great influence on securing structural performance. Therefore, in this study, a structural experiment was conducted to understand the structural performance according to the depth change for U-shaped composite beam. A total of three specimens were planned, including two specimens that changed the depth using a criteria specimen planned for a general parking lot. The results of the experiment showed that the specimens who planned the depth greatly had better structural performance such as yield strength, maximum strength, and energy than the standard specimen.

Review on the succession process of Pinus densiflora forests in South Korea: progressive and disturbance-driven succession

  • Choung, Yeonsook;Lee, Jongsung;Cho, Soyeon;Noh, Jaesang
    • Journal of Ecology and Environment
    • /
    • v.44 no.3
    • /
    • pp.126-142
    • /
    • 2020
  • Background: Most of the Pinus densiflora forests, occupying the largest area, have been restored in South Korea since the 1970s. As young pioneer forests, the succession process is under way. Since the forests are distributed nationwide and are vulnerable to disturbances, the process may differ depending on the geography and/or site conditions. Therefore, we reviewed the direction, the seral communities, and the late-successional species of progressive and disturbance-driven succession nationwide in the cool-temperate zone through meta-analysis and empirical observations. Main text: As a result of a meta-analysis of the direct succession and vertical structure, we found that the P. densiflora forest is in a directionally progressive succession, changing to the broadleaved forest after forming a mixed forest with its overwhelming successor, Quercus species (particularly Q. mongolica and Q. serrata). In dry stands in a relative sense, the Quercus species was favored occupying over 80% of the abundance of the succeeding species. Therefore, in dry stands, it is presumed that Quercus-dominated stage would last for a long time due to the current dominance and long life span, and eventually, it settles as Quercus-broadleaved forest with a site change. Contrary to this, it is presumed that in mesic stands where Quercus species do not occur or have low abundance, the late-successional broadleaved species settle early to form a co-dominant forest with multiple species. Due to geographical limits, the species composition of the two late-successional forests is different. Disturbances such as insect pests and fire retrogressed vulnerable P. densiflora forest for a while. However, it was mostly restored to the Quercus forest and is expected to be incorporated in the pathway of the dry stand. Conclusions: We revealed the succession process of P. densiflora forests according to geography and moisture and found that stand moisture had a decisive effect on the species and abundance of the successor. Although the P. densiflora forest is undergoing structural changes, the forest is still young; so within a few decades, physiognomy is not likely to change. Therefore, the decrease in the forest area may be due to other causes such as disturbances and forest conversion rather than due to succession.

Estimation Method of Creep Coefficient in Concrete Structures (콘크리트 구조물에서 크리프 계수 추정 방법)

  • Park, Jong-Bum;Park, Jung-Il;Chang, Sung-Pil;Cho, Jae-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.619-628
    • /
    • 2009
  • To predict the time-dependent behavior of concrete structures, the models which describe the time-dependent characteristics of concrete, i.e. creep and shrinkage are required. However, there must be significant differences between the displacements that are obtained using the given creep and shrinkage models and the measured displacements, because of the uncertainties of creep and shrinkage model itself and those of environmental condition. There are some efforts to reduce these error or uncertainties by using the model which are obtained from creep test for the concrete in construction site. Nevertheless, the predicted values from this model may be still different from the actual values due to the same reason. This study aimed to propose a method of estimating the creep coefficient from the measured displacements of concrete structure, where creep model uncertainty factor was considered as an error factor of creep model. Numerical validation for double composite steel box and concrete beam showed desirable feasibility of the presented method. Consideration of the time-dependent characteristics of creep as one of the error factors make it possible to predict long-term behaviors of concrete structures more realistically, especially long-span PSC girder bridges and concrete cable-stayed bridges of which major problem is the geometry control under construction and maintenance.

Comparison of Pure Reinforcement Quantity to Development & Splice Reinforcement Quantity using High-strength Reinforcing Bars (고강도 철근 사용에 따른 순수 철근량에 대한 정착 및 이음 철근량 비교)

  • Cho, Seung-Ho;Na, Seung-Uk;Roh, Young-Sook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.72-80
    • /
    • 2018
  • Whilst it is common to construct high-rise buildings and long-span structures in the construction and building industry, there might be a number of problems such as excessive re-bars arrangement, deterioration of concrete quality, unnecessary quantity take-off and so forth. As these types of buildings and structures are getting more popular, it is widespread to apply high-strength materials such as high-strength concrete and re-bars to sustain durability and stability. This research aims to investigate the effectiveness of the high-strength reinforcing bars on the underground parking in a rigid-frame structure. In this study, the reinforcing bars with different yield strength were applied to corroborate the usefulness and practicability of the high-strength re-bars on the underground parking in a rigid-frame structure. The test results show that the quantity of reinforcement bars is lowered, as the yield strength of the re-bars are grown in general. However, the quantity of reinforcement bars on the development and splice has a tendency to increase slightly. Despite of the increase of the development and splice, the total quantity of reinforcing bars was reduced since the increasing ration of the pure quantity is higher than the development and splice. Base on the test results, it would be possible to achieve the reduction of reinforcing bars arrangement and lowering the amount of work to be done during a construction phase. Moreover, the reduced amount of bar arrangement will make it possible to improve workability and constructability of reinforced concrete structures. Ultimately, we will be able to attain improved quality and efficiency of construction using reinforced concrete.

A Study on Tension for Cables of a Cable-stayed Bridge Damper is Attached (댐퍼가 부착된 사장교의 케이블 장력에 관한연구)

  • Park, Yeon Soo;Choi, Sun Min;Yang, Won Yeol;Hong, Hye Jin;Kim, Woon Hyung
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.609-616
    • /
    • 2008
  • Recently, many ocean bridges that connect land to island or island to island have been constructed along with the improvement of the nation's economy. Long-span bridges can be categorized as suspension bridge, cable-stayed bridge, arch bridge and truss bridge. In this study, correction with respect to construction error can be presented on site through the monitoring of the cable tension change of real structure for four major construction stages so that construction accuracy, including the management of profiles, can be improved. A vibration method, the so-called indirect method that uses the cable's natural frequency changes from the acceleration sensor installed on the cable, is applied in measuring cable tension. In this study, the estimation formula for the effective length of cable with damper is presented by comparing and analyzing between actual measurement and analysis result for the change of the cable's effective length. By the way, it is known that the reliability of estimating cable tension by applying the former method that uses the net distance from damper to anchorage is low. Therefore, for future reference of the maintenance stage, the presented formula for estimating the effective length of cable can be used as a reference for the rational decision-making, such as the re-tensioning and replacement of cable.