• Title/Summary/Keyword: Long-Exposure Technique

Search Result 63, Processing Time 0.024 seconds

Fabrication of Sub-100 nm Embossing Patterns using Weakly-Polymerized Region via Long-Exposure Technique (LET) in Two-Photon Polymerization (긴 레이저 조사방식에 의한 저밀도 이광자 광중합 영역을 이용한 Sub-100nm 정밀도의 엠보싱 패턴제작)

  • Park, Sang-Hu;Lim, Tae-Woo;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.1 s.190
    • /
    • pp.64-70
    • /
    • 2007
  • A long-exposing technique (LET) has been conducted to create nanoscale patterns applicable to diverse micro-devices using two-photon polymerization (TPP). By the weakly-polymerized region via the LET, double-layered embossing patterns can be fabricated simply in a single step. The LET makes possible a voxel and its surrounding to be fully grown into more than 500 nm in lateral size and weakly-polymerized region (WPR), respectively. In the WPR. interconnecting ribs between voxels are generated, and they lead to the creation of double-layered dot patterns. Moreover, by controlling the distance between voxels, various shapes of interconnecting rib can be fabricated when the LET is applied. Various embossing patterns were fabricated to evaluate the usefulness of the proposed technique as a novel nanopatterning technique in TPP.

A study on the Evaluation of Surface Properties of UHPC Panels following long-term outdoor exposure (옥외 장기폭로에 따른 UHPC 패널의 표면 특성 평가 연구)

  • Kim, Tae-Ik;Choi, Byung-Keol;Park, Yong-Kyu;Choi, Sang-Hoon;Yoon, Gi-Won;Lee, Dae-Seek
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.176-177
    • /
    • 2022
  • In this study, surface performance evaluation was conducted according to the fiber and surface finishing technique of the exterior material using Ultra High Performance Concrete(UHPC), whitch is spotlighted as a highly durable exterior material. As a result of outdoor exposure, the initial performance of the UHPC Panel using organic fibers was maintained without being affected by the surface finishing technique. In the specimen using steel fiber, the surface performance was maintained when the water repellent treatment was performed in the plain specimen, but fiber corrosion occurred in the specimen to which the surface finishing technique was applied.

  • PDF

Slow Sync Image Synthesis from Short Exposure Flash Smartphone Images (단노출 플래시 스마트폰 영상에서 저속 동조 영상 생성)

  • Lee, Jonghyeop;Cho, Sunghyun;Lee, Seungyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.3
    • /
    • pp.1-11
    • /
    • 2021
  • Slow sync is a photography technique where a user takes an image with long exposure and a camera flash to enlighten the foreground and background. Unlike short exposure with flash and long exposure without flash, slow sync guarantees the bright foreground and background in the dim environment. However, taking a slow sync image with a smartphone is difficult because the smartphone camera has continuous and weak flash and can not turn on flash if the exposure time is long. This paper proposes a deep learning method that input is a short exposure flash image and output is a slow sync image. We present a deep learning network with a weight map for spatially varying enlightenment. We also propose a dataset that consists of smartphone short exposure flash images and slow sync images for supervised learning. We utilize the linearity of a RAW image to synthesize a slow sync image from short exposure flash and long exposure no-flash images. Experimental results show that our method trained with our dataset synthesizes slow sync images effectively.

VISUALIZATION OF THE INTERNAL WATER DISTRIBUTION AT PEMFC USING NEUTRON IMAGING TECHNOLOGY: FEASIBILITY TEST AT HANARO

  • Kim Tae-Joo;Jung Yong-Mi;Kim Moo-Hwan;Sim Cheul-Muu;Lee Seung-Wook;Jeon Jin-Soo
    • Nuclear Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.449-454
    • /
    • 2006
  • Neutron imaging technique was used to investigate the water distribution and movement in Polymer Electrolyte Membrane Fuel Cell (PEMFC) at HANARO, KAERI. The Feasibility tests were performed in the first and second exposure rooms at the neutron radiography facility (NRF) at HANARO in order to check the ability of each exposure room, respectively. The feasibility test apparatus was composed of water and pressurized air before making up the actual test apparatus. Due to the low neutron intensity in the second exposure room, the exposure time was too long to investigate the transient phenomena of PEMFC. Although the exposure time was improved to 0.1 sec in the first exposure room, it was difficult to discriminate detail water movement at the channel due to the high noise level. Therefore, the experimental setup must be optimized according to the test conditions. Water discharge characteristics were investigated under different flow field geometries by using feasibility test apparatus and the neutron imaging technique. The water discharge characteristics of a 3-parallel serpentine are superior to those of a 1-parallel serpentine, but water at Membrane Electrode Assembly (MEA) was not removed, regardless of the flow field type.

Deep Learning Machine Vision System with High Object Recognition Rate using Multiple-Exposure Image Sensing Method

  • Park, Min-Jun;Kim, Hyeon-June
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.76-81
    • /
    • 2021
  • In this study, we propose a machine vision system with a high object recognition rate. By utilizing a multiple-exposure image sensing technique, the proposed deep learning-based machine vision system can cover a wide light intensity range without further learning processes on the various light intensity range. If the proposed machine vision system fails to recognize object features, the system operates in a multiple-exposure sensing mode and detects the target object that is blocked in the near dark or bright region. Furthermore, short- and long-exposure images from the multiple-exposure sensing mode are synthesized to obtain accurate object feature information. That results in the generation of a wide dynamic range of image information. Even with the object recognition resources for the deep learning process with a light intensity range of only 23 dB, the prototype machine vision system with the multiple-exposure imaging method demonstrated an object recognition performance with a light intensity range of up to 96 dB.

A Study on the Image Quality and Patient Dose in Erect Simple Abdomen Radiography (복부 선자세 단순촬영시 화질과 피폭선량에 관한 연구)

  • Kim, Jung-Min;Hayashi, Taro;Ishida, Yuji;Sakurai, Tatsuya
    • Journal of radiological science and technology
    • /
    • v.21 no.1
    • /
    • pp.29-34
    • /
    • 1998
  • The purpose of simple abdomen erect projection is to see the fluid level which indicates gastrointestinal ileus or free air due to perforation. we do not have to insist on low kVp technique in simple abdomen erect position as long as we can detect the fluid level and free air shadow. Therefore, the author tried to decrease patient dose by high kVp technique and to improve the image quality due to motion artifact by reduction of exposure time. [Methods] Experiment 1. * screen/film SRO1000/HRH * exposure factor : $140\;kvp{\pm}5\;kv$ with added filters, 200 mA, 0.01 sec * phantom : Acryles : 15.0 cm(equivalent to 17 cm body thickness) 17.5 cm(equivalent to 21 cm body thickness) 20.0 cm (equivalent to 25 cm body thickness) With the exposure factor for same film density($D=0.8{\pm}0.1$) and with the materials above, we tried to find out entrance skin dose and gonad dose for both male and female. Experiment 2. Burger's phantom radiography were checked to see whether there was any change of image quality according to the kVp and the added filters. Experiment 3. Using rotating meter(self made), we examined the motion artifact and the exposure time limitation. [Results and conculution] 1. Using high voltage technique of 140 kVp with added filter, Skin dose, testicle dose and ovary dose decrease to 89.3%, 47% and 71.4% respectively compare to 70 kVp technique, 2. No great changes of Burger's phantom image has detected as from 70 kVp to 140 kVp and the air hole size of Burger's phantom over 0.028 cc(Diameter 3 mm, hight 4 mm) can be distinghished. 3. 0.01 sec(1 pulse) exposure time is possible in the single phase full wave rectification that why we can quitely reduce the unsharness caused by patient's movement.

  • PDF

Thoracic Vertebrae Lateral Projection in Radiography (흉추(胸椎) 측면촬영(側面撮影)에 대(對)한 검토(檢討))

  • Choi, Jong-Hak;Jeon, Man-Jin;Kim, Young-Ill;Huh, Joon
    • Journal of radiological science and technology
    • /
    • v.1 no.1
    • /
    • pp.25-29
    • /
    • 1978
  • This study was done for the purpose of graphing rather improved technique through reviewing conventional technigue of the thoracic vertebrae lateral projection. The roentgenographic images which were taken at Korea University Hospital from January, 1976 to December, 1977 were observed for this study. The results were as belows: 1. The quality of diagnostic radiograph turned out that good is 21.4%, intermediate is 40.7% and poor is 37.9%. 2. The poor quality of images the caused by overlapping shadows(59.6%), incorrect position of patients(15.0%), motion of patients(7.5%), over-exposure(8.3%), under-exposure(6.7%) and processing faults(2.9%). The images were taken by following four methods of experiments were campared and researched in order to improve the problems of conventional technigues which were came out on the poor radiographes. 1. (Method 1) Low mA-long time exposure during normal respiration 2. (Method 2) Short time exposure during normal respiration 3. (Method 3) After deep inspiration, short time exposure during expiration 4. (Method 4) After full expiration, short time exposure during inspiration. In a result of the above experiments, it was found that the improved image could be got from the method 3.

  • PDF

A Study on the Radiation Exposure Dose of Brain Perfusion CT Examination a Phantom (Phantom을 이용한 뇌 관류 CT검사에서 방사선 피폭선량에 관한 연구)

  • Jung, Hong-Rynag;Kim, Ki-Jeong;Mo, Eun-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.5
    • /
    • pp.287-294
    • /
    • 2015
  • The purpose of this study, was Let's examine the exposure dose at the time of cerebral blood flow CT scan of acute ischemic stroke patients. In particular, long-term high doses of radiation sensitive organs and we Measured using phantom and a glass dosimeter. Apply the existing protocol suggested by the manufacturer (fixed time delay technique) and the proposed new convergence protocol (bolus tracking technique), reporting to measure the dose, dose reduction was to prepare the way. Results up to 39.8% as compared to the existing protocols in a new suggested convergence protocol, a minimum of 5.8% was long-term dose is reduced. Test dose of $CDTI_{vol}$ and DLP values decreased 25%, respectively, were measured at less than recommended dose. Try checking the protocol set out in the existing based on the analysis result of the above, by applying the proposed new convergence protocol by reducing the dose would have to contribute to improved public health. It is believed to be research continues to find the optimum protocol in the other tests.

Improvement of internal exposure assessments of the inhalation of fuel-type hot particles during long-term outages

  • Moonhyung Cho;Hyeongjin Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3925-3932
    • /
    • 2024
  • During outages at nuclear power plants, much more care for radiation workers against internal exposure should be ensured given that more hot particles exist relative to the amount during normal operation. If fuel-type hot particles (FTHP) are inhaled, they can cause more severe health risks compared to activation-type hot particles (ATHP), which contain 60Co, due to the alpha-emitting nuclides within FTHPs. The activities of difficult-to-measure nuclides within FTHPs inhaled by workers are inferred by the age-dating technique using a141Ce/144Ce ratio as measured by whole-body counters. However, this method may be limited to outages that last for only a few months due to the short half-life (32.5 days) of 141Ce. We studied the feasibility of utilizing 241Am, a nuclide with a long half-life of 432.6 years, as an alternative to 141Ce. Additionally, we improved the performance of a stand-type whole-body counter for low-energy gamma spectroscopy to meet the criterion (RMSE ≤0.25) specified in ANSI/HPS N13.30-2011 by employing an artificial neural network (ANN). This study can contribute to more rapid and accurate internal dose assessments for workers who have inhaled FTHPs during long-term outages at nuclear power plants.

Fabrication of sub-30 nm nanofibers using weakly two-photon induced photopolymerized region (저밀도 이광자 광중합 영역을 이용한 30 nm 이하의 패턴제작)

  • Park, Sang-Hu;Lim, Tae-Woo;Yang, Dong-Yol
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1249-1253
    • /
    • 2007
  • Experimental studies on the fabrication of sub-30 nm nanofibers using weakly two-photon induced photopolymerized region have been carried out. For the generation of nanofibers inside or outside microstructures, an over-polymerizing method involving a long exposure technique (LET) was proposed. Such nanofibers can find meaningful applications as bio-filters, mixers, and many other uses in diverse research field. A multitude of nanofibers with a notably high resolution (about 22 nm) in two-photon polymerization was achieved using the LET. Furthermore, it was demonstrated that the LET can be employed for the direct fabrication of various embossing patterns by controlling the exposure duration and the interval between voxels. Thin interconnecting networks are formed regularly in the boundary of the over-polymerized region, which allows for the creation of various pattern shapes. Overall of this work, some patterns including nanofibers are fabricated by the LET.

  • PDF