• Title/Summary/Keyword: Long tunnel design

Search Result 177, Processing Time 0.024 seconds

Proposal of a New Type of 4-Lane Soundproof Tunnel Girder and Structural Performance Evaluation (4차선급 신형식 방음터널 거더 제안 및 구조적 성능평가)

  • Goh, Won-Hui;Kim, Min-Jae;Ma, Chuan;Kang, Duck-Man;Zi, Goang-Suep
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.24-31
    • /
    • 2021
  • The soundproof tunnels have been generally designed with H-beam girders, and the high weight of H-beam may cause the excessive design of the substructure. To solve this problem, this paper proposes a new soundproof tunnel girder design composed of pipes and discontinuous plates. First, the structural behavior of the straight girder according to the design parameters was examined through finite element analysis. The arrangement and shape of the plates were determined as the design parameter, to obtain the optimal design of girder. After then, the structural behavior and buckling stability of the arched girder were subsequently evaluated. As a result of the parameter analysis, it was confirmed that the axial force acting on the girder increased and the moment decreased as the ratio of unsupported sections decreased or the number of supporting plates increased. The stress concentration on the pipe member was relieved by increasing the long axis length of the elliptical plate. Arched girder analysis showed that the structural efficiency increase as the long axis of elliptical plate increase. As a result of the buckling evaluation, the buckling threshold load of the three connected girders was about 3.7 times higher than the design load. Consequently, it was confirmed that the proposed soundproof tunnel structure design satisfies both light weight and structural safety.

Wind-induced response and loads for the Confederation Bridge -Part I: on-site monitoring data

  • Bakht, Bilal;King, J. Peter C.;Bartlett, F.M.
    • Wind and Structures
    • /
    • v.16 no.4
    • /
    • pp.373-391
    • /
    • 2013
  • This is the first of two companion papers that analyse ten years of on-site monitoring data for the Confederation Bridge to determine the validity of the original wind speeds and wind loads predicted in 1994 when the bridge was being designed. The check of the original design values is warranted because the design wind speed at the middle of Northumberland Strait was derived from data collected at shore-based weather stations, and the design wind loads were based on tests of section and full-aeroelastic models in the wind tunnel. This first paper uses wind, tilt, and acceleration monitoring data to determine the static and dynamic responses of the bridge, which are then used in the second paper to derive the static and dynamic wind loads. It is shown that the design ten-minute mean wind speed with a 100-year return period is 1.5% less than the 1994 design value, and that the bridge has been subjected to this design event once on November 7, 2001. The dynamic characteristics of the instrumented spans of the bridge including frequencies, mode shapes and damping are in good agreement with published values reported by others. The on-site monitoring data show bridge response to be that of turbulent buffeting which is consistent with the response predicted at the design stage.

A Case Study on the Design of Tunnel Excavation in Geological Anomalies (터널굴착시 지질이상대 통과방안 설계사례 연구)

  • Yoo, Joung-Hoon;Kim, Yang-Kyun;Chung, Chul-Hwa
    • Tunnel and Underground Space
    • /
    • v.21 no.5
    • /
    • pp.341-348
    • /
    • 2011
  • As a result of the detailed site investigation performed for the design of a 4.3 km long tunnel, geological anomalies of four fault zones and a rock boundary were discovered on the tunnel route. Most of all, it was confirmed that pyrite, which may corrode steel material, is contained inside the geological anomalies, and pressured ground water flows out of the fault fractured zone. To overcome these geological conditions, antisulfur concrete for the concrete lining and anticorrosive swelling rock bolts are designed in the pyrite-containing sections. For the sections where a great amount of groundwater outflows, water blocking methods including grouting are applied according to the result of numerical analyses on the seepage. In addition, since the past earthquakes occurred around Korea have take place mainly near fault zones, seismic analyses were performed based on the Soil-Structure Interaction (SSI) concept and the strength of concrete tunnel lining is designed to be 27 MPa from 24 MPa in order to reinforce the tunnel structure.

Analysis on Downtime element of Gripper TBM based on field data (현장 데이터 분석을 통한 Gripper TBM의 Downtime 요소 분석)

  • Park, Jinsoo;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.393-402
    • /
    • 2021
  • The first TBM introduced in Korea was the gripper TBM, which was applied to the Gudeok Waterway Tunnel in 1985. In the initial stage of the introduction of the gripper TBM, many applications were mainly focused on waterway tunnels (Tunnel Mechanized Construction Design, 2008). Currently, the construction range of gripper TBM in Korea is widely applied to not only waterway tunnels, but also subways, railway tunnels, and TBM+NATM expansion. Overseas, gripper TBM is generally applied, and even when NATM tunnel is applied, it is applied as an exploration tunnel because of the excellent advance rate of gripper TBM and used as an evacuation tunnel after completion. Due to the fast excavation speed, the application of the gripper TBM in the rock section of weathered rock or higher can minimize the environmental and civil complaints caused by creating a large number of work areas when planning long tunnels or mountain tunnels. In this study, the work process of the general gripper TBM was analyzed by analyzing the construction cycle and the gripper TBM with a diameter of 2.6~5.0 m, which was applied the most in Korea. Downtime was investigated and analyzed.

Qualitative Factor Analysis on Speed Reduction of Drivers in Expressways Tunnel Section (고속도로 터널구간 도로이용자 속도감소의 정성적 요인분석 연구)

  • Park, Jun-Tae;Lee, Soo-Beom;Kim, Tae-Ho
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.151-158
    • /
    • 2011
  • Tunnel sections on the expressway are different from rest of sections on the expressway in terms of velocity, the number of passing cars, and vehicle density which, in particular, affect drivers' behavior before and after drivers pass through the tunnel. However, literature review reveals that former studies are too focused on quantitative indicator to consider qualitative aspects. Thus, this study tried to find out qualitative factors affecting speed reduction in tunnel sections based on questionnaire surveys and its analysis in tunnel sections selected by taking consideration of diverse conditions. Analysis showed that factors concerning tunnel configuration (lane width, shoulder width, and tunnel length) related to very long tunnels increasingly popular recently had some effects on reduced speed inside of tunnels. It appeared that visual environment such as visibility of tunnel entrance had an impact in speed reduction and vehicle speed tended to change according to lighting illumination level inside of tunnels. It is expected that continual investment would be made in technological development related to expressway tunnel design and service improvement based on this study.

The numerical wind tunnel for industrial aerodynamics: Real or virtual in the new millennium?

  • Stathopoulos, T.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.193-208
    • /
    • 2002
  • Previous studies have shown that Computational Wind Engineering (CWE) is still in its infancy and has a long way to go to become truly useful to the design practitioner. The present work focuses on more recent studies to identify progress on outstanding issues and improvements in the numerical simulation of wind effects on buildings. The paper reviews wind loading and environmental effects; it finds that, in spite of some interesting and visually impressive results produced with CWE, the numerical wind tunnel is still virtual rather than real and many more parallel studies - numerical and experimental - will be required to increase the level of confidence in the computational results.

Article - 환기.방재측면에서의 초장대.대심도 터널에 관한 고찰

  • Lee, Hang
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • s.54
    • /
    • pp.41-55
    • /
    • 2011
  • The current railway projects under plan, design, or construction have been designed as 'very long and deep underground tunnel'. Therefore, it is reasonable that the standards for preventing disaster in such conditions should be intensified in order to avoid repeating the same failure which happened in Daegu subway disaster, Although we consent to the opinion that nothing can compete with human being's life, it is very difficult to protect the life from all of potential disasters perfectly in railway fields because the excessive standards can result in excess construction cost, which can bring about cancelation of the project itself eventually. Therefore optimized disaster design standard is required to negotiate the conflict between economical cost and social tolerance limitation simultaneously.

  • PDF

Research Activity on Rocket-Ramjet Combined-cycle Engine in JAXA

  • Takegoshi, Masao;Kanda, Takeshi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.460-468
    • /
    • 2008
  • Recent activities on the scramjet and rocket-ramjet combined-cycle engine of Japan Aerospace Exploration Agency(JAXA) are herein presented. The scramjet engines and combined-cycle engines have been studied in the world and JAXA has also studied such the engines experimentally, numerically and conceptually. Based on the studies, 2 to 3 m long, hydrogen-fueled engine models were designed and tested at the Ramjet Engine Test Facility(RJTF) and the High Enthalpy Shock Tunnel(HIEST). A scramjet engine model was tested in Mach 10 to 14 flight condition at HIEST. A 3 m long scramjet engine model was designed to reduce a dissociation energy loss in a high temperature condition. Drag reduction by a tangential injection and two ways of a transverse fuel injection were examined. Combustor model tests at three operating modes of the combined-cycle engine were conducted, demonstrating the combustor operation and producing data for the engine design at each mode. Aerodynamic engine model tests were conducted in a transonic wind tunnel, demonstrating the engine operation in the ejector-jet mode. A 3 m long combined-cycle engine model has been tested in the ejector-jet mode and the ramjet mode since March 2007. Carbon composite material was examined for application to the engines. Production of the cooling channel on a nickel alloy plate succeeded by the electro-chemical etching.

  • PDF

Development of design charts for concrete lining in a circular shaft (원형수직구 콘크리트라이닝 단면설계도표 개발)

  • Shin, Young-Wan;Kim, Sung-Soo;Kim, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.2
    • /
    • pp.165-175
    • /
    • 2010
  • Recently, requirement of a long subsea tunnel has increased due to political, economical and social demands such as saving of distribution costs, improvement of traffic convenience, and regional development. Road and railroad tunnel need a shaft for construction and ventilation because of increase of tunnel length. Shaft diameter, lining sectional thickness and rebar quantity have to be determined for design of concrete lining in the shaft. A lot of structural analyses are needed for optimal design of concrete lining considering shaft diameter, load conditions and ground conditions. Design charts are proposed by structural analyses for various conditions in this study. A sectional thickness and rebar quantity can be easily determined using the proposed design charts.

Intelligent management system for tunnel under construction using ITIS (Intelligent Tunnelling Information System)

  • Kim Changyong;Hong Sungwan;Bae Gyujin;Kim Kwangyeom
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.170-175
    • /
    • 2003
  • Ground and rock mass considered in tunnelling have characteristics such as uncertainty, heterogeneity and structural complexity because they have been formed undergoing various geological events for a long period. So, it is difficult for engineers to predict behaviors of rock mass in tunneling. In the paper the authors describe the development of an integrated expert system prototype for site investigation, design and construction in tunnelling and introduce the case applying this system to the tunnel construction site under construction. Geostructure Research Group in Korea Institute of Construction Technology (KICT) has developed the system during the past 4 years. The system mainly consists of several modules which is related to the design, construction and management of tunnelling. The test site, Neung-dong tunnel is located in Ulsan, Korea. The geology map shows it may confront big fault zone whose width is over kilometres. With the networking system of ITIS, various information of face mapping, monitoring and other construction task can be transmitted into the database and GIS Server at real time. And necessary analyses can be carried out with the modules equipped in the system.

  • PDF