• Title/Summary/Keyword: Long tunnel design

Search Result 177, Processing Time 0.023 seconds

Case Studies on the Experiments for Long-Term Shear Behavior of Rock Discontinuities (암반 내 불연속면의 장기 전단 거동 평가를 위한 고찰)

  • Juhyi Yim;Saeha Kwon;Seungbeom Choi;Taehyun Kim;Ki-Bok Min
    • Tunnel and Underground Space
    • /
    • v.33 no.1
    • /
    • pp.10-28
    • /
    • 2023
  • Long-term shear behavior of the rock discontinuities should be analyzed and its stability should be evaluated to ensure the long-term stability of a high-level radioactive waste disposal repository. The long-term shear behavior of the discontinuities can be modeled with creep and RSF models. The shear creep test, velocity step test, and slide-hold-slide test can be performed to determine their model parameters or analyze the shear behavior by experiments under various conditions. Testing apparatuses for direct shear, triaxial compression, and biaxial shear were mainly used and improved to reproduce the thermo-hydro-mechanical conditions of local bedrock, and it was confirmed that the shear behavior could vary. In order to design a high-level radioactive waste disposal site in Korea, the long-term behavior of rock discontinuities should be investigated in consideration of rock types, thermo-hydro-mechanical conditions, metamorphism, and restoration of shear resistance.

Recent Issues in the Design and Construction of High-Performance Shotcrete Lining (고성능 숏크리트 라이닝의 설계 및 시공기술 분석)

  • 배규진;이석원;박해균;이명섭;김재권;장수호
    • Tunnel and Underground Space
    • /
    • v.14 no.1
    • /
    • pp.1-15
    • /
    • 2004
  • The development of high-performance shotcrete lining is essential in improving the long-term durability of tunnels and in introducing single-shell tunnelling methods, where shotcrete as well as rockbolts are used as permanent support members. In this paper, new and advanced admixtures to improve shotcrete performance are introduced. In addition, requirements for mechanical properties as well as test items for quality control of shotcrete are summarized. A case study on the application of the pneumatic pin penetration test which can estimate compressive strength of shotcrete more easily and quickly is also illustrated. Previous studies to analyze the behaviors of shotcrete lining by considering its transient hardening and to carry out the sensitivity analysis of the design parameters of shotcrete lining are discussed to give fundamental concepts on rock-support interactions. Representative single-shell tunnelling methods where high-performance shotcrete lining is applied as a permanent support are also introduced.

Standard Proposed for Fire Safety Evaluation of Railway Tunnels and Evaluation of Fire Temperature (철도터널내 화재시 내화성능 평가를 위한 기준 제안 및 화재 온도 평가)

  • Won, Jong-Pil;Choi, Min-Jung;Lee, Su-Jin;Lee, Sang-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.196-200
    • /
    • 2010
  • The number of railway tunnels has been increasing rapidly. Although fires in long railway tunnels are rare, the consequences can be devastating. Prior to this study, there were no adequate time-temperature curves for the fire safety assessment of Korean railway tunnels. We studied a standard foreign time-temperature curve for which the heat rate is based on the traffic and the types of vehicles. We then proposed a hydrocarbon curve as a fire design model for railway tunnels in Korea. We examined the implications of this proposed model on railway tunnel structures using numerical analysis.

Implementation of an Integrated Monitoring System for Constructional Structures Based on SaaS in Traditional Towns with Local Heritage (SaaS(Software as a Service) 기반 지방유적도시 구조물 유지관리계측 통합모니터링시스템 구현)

  • Min, Byung-Won;Oh, Yong-Sun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2015.05a
    • /
    • pp.15-16
    • /
    • 2015
  • Measuring sensor, equipment, ICT facilities and their software have relatively short life time comparing to constructional structure so that we should exchange or fix them continuously in the process of maintenance and management. In this paper, we propose a novel design of integrated maintenance, management, and measuring monitoring system applying the concept of mobile cloud. For the sake of disaster prevention for constructional structures such as bridge, tunnel, and other traditional buildings in the village of local heritage, we analyze status of these structures in the long term or short term period as well as disaster situations. Collecting data based on mobile cloud and analyzing future expectations based on probabilistic and statistical techniques, we implement our integrated monitoring system for constructional structures to solve these existing problems. Final results of this design and implementation are basically applied to the monitoring system for more than 10,000 structures spread over national land in Korea. In addition, we can specifically apply the monitoring system presented here to a bridge of timber structure in Asan Oeam Village and a traditional house in Andong Hahoe Village to watch them from possible disasters. Total procedure of system design and implementation as well as development of the platform LinkSaaS and application services of monitoring functions implemented on the platform. We prove a good performance of our system by fulfilling TTA authentication test, web accommodation test, and operation test using real measuring data.

  • PDF

Flutter performance of central-slotted plate at large angles of attack

  • Tang, Haojun;Li, Yongle;Chen, Xinzhong;Shum, K.M.;Liao, Haili
    • Wind and Structures
    • /
    • v.24 no.5
    • /
    • pp.447-464
    • /
    • 2017
  • The flutter instability is one of the most important themes need to be carefully investigated in the design of long-span bridges. This study takes the central-slotted ideal thin flat plate as an object, and examines the characteristics of unsteady surface pressures of stationary and vibrating cross sections based on computational fluid dynamics (CFD) simulations. The flutter derivatives are extracted from the surface pressure distribution and the critical flutter wind speed of a long span suspension bridge is then calculated. The influences of angle of attack and the slot ratio on the flutter performance of central-slotted plate are investigated. The results show that the critical flutter wind speed reduces with increase in angle of attack. At lower angles of attack where the plate shows the characteristics of a streamlined cross-section, the existence of central slot can improve the critical flutter wind speed. On the other hand, at larger angles of attack, where the plate becomes a bluff body, the existence of central slot further reduces the flutter performance.

Estimation of Optimum Pile length Using Various Prediction (다양한 예측기법을 이용한 현장타설말뚝의 최적길이 산정)

  • Choi, Young-Seok;Iim, Hyung-Joon;Song, Myung-Jun;Jang, Hak-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.700-707
    • /
    • 2008
  • As plan connecting island to island or island to land is needed, a lot of long-span bridge is being designed lately in Southern part of Korea. With development of pile equipment, overhanging large-scaled concrete pile are adopted to foundation type of main tower or pylon. About the number of 15~30 group piles per tower foundation is designed to resist long-spaning super-structure load, but by restricted condition of site investigation cost, a few boring-hole tests are performed to identify sub-ground layers. Up to now, direct-curved method connecting two or three known boring logs and representative interval method are usually used to evaluate unknown depth and rock properties at locations where piles are constructed. Because this approach is not logical and so rough, much difference occurs between designed length of piles and real length of it. In this paper, using a lot of various prediction method(reciprocal distance method, inverse square distance method and kriging method etc.), we suggest optimum length of group piles.

  • PDF

Guidelines for Designing the Shape and Layout of Thermal Energy Storage (TES) Rock Caverns (열에너지 저장 암반공동의 형상 및 레이아웃 설계 가이드라인)

  • Park, Dohyun;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.115-124
    • /
    • 2015
  • Thermal energy storage (TES) is a technology that stores surplus thermal energy at high or low temperatures for later use when the customer needs it, not just when it is available. TES systems can help balance energy demand and supply and thus improve the overall efficiency of energy systems. Furthermore, the conversion and storage of intermittent renewable resources in the form of thermal energy can help increase the share of renewable resources in the energy mix which refers to the distribution of energy consumption from different sources, and to achieve this, it is essential to combine renewable resources with TES systems. Underground TES using rock caverns, known as cavern thermal energy storage (CTES), is a viable option for large-scale, long-term TES utilization although its applications are limited because of the high construction costs. Furthermore, the heat loss in CTES can significantly be reduced due to the heating of the surrounding rock occurred during long-term TES, which is a distinctive advantage over aboveground TES, in which the heat loss to the surroundings is significantly influenced by climate conditions. In this paper, we introduced important factors that should be considered in the shape and multiple layout design of TES caverns, and proposed guidelines for storage space design.

Consideration of LED Saloon light for rolling stock (철도차량 LED 실내등 적용 검토)

  • Jeong, Hyun-Jeong;Kim, Shin-Gug;Ahn, Hong-Kwan;Kim, Jae-Gi
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1457-1465
    • /
    • 2011
  • The saloon light is the device that can offer convenience and comfort to the driver and passenger when the train is operated at night or in the tunnel. Generally, The fluorescent type saloon for the rolling stock have been used, but the problems that are short life and the generation of heat have been brought about because the saloon lihgts of rolling stock are supposed to operated continuously long time, and high power consumption. So, the development of new type of saloon lights has been requested in order to solve these problems. And recently the various LED type lights have been developed and LED type saloon lights for rolling stock also has been developed. Therefore, we survey the characteristic, function and needed condition of the LED type saloon lights for rolling stock, and analyze the good and bad point, and then research the complement of weak point. We want to find the direction and develop the design of future LED saloon light type.

  • PDF

Geotechnical parameters from pressuremeter tests for MRT Blue Line extension in Bangkok

  • Likitlersuang, Suched;Surarak, Chanaton;Wanatowski, Dariusz;Oh, Erwin;Balasubramaniam, Arumugam
    • Geomechanics and Engineering
    • /
    • v.5 no.2
    • /
    • pp.99-118
    • /
    • 2013
  • Construction of the extension project of the Bangkok MRT Blue Line underground railway was recently started in 2011. The construction of approximately 5 km long underground tunnel and 4 deep excavations of underground station are considered to be the most important geotechnical works. The pressuremeter was selected as a high-quality in situ testing of the soil to evaluate design parameters for the project. In addition, other field and laboratory tests such as vane shear and $CK_0U$ triaxial tests were included in the investigation programme. This paper aims to present the ground conditions encountered along the MRT Blue Line extension project as well as the site investigation and interpretation techniques with particular focus on the pressuremeter tests. The results are also compared with the pressuremeter investigation from the previous Bangkok MRT project.

Design and maintenance art of long tunnel (장대터널의 설계 및 운영관리기술)

  • 윤철욱
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.28 no.6
    • /
    • pp.476-483
    • /
    • 1999
  • 사회기반시설의 확충을 통한 물류비용 절감을 위해 최근 국내 고속도로 및 국도, 도시교통망의 신.증설이 가속화되고 있는데 특히 1965년 2개 노선 75km로 시작하여 1998년 말 현재 20개 노선 1996.3km인 고속도로는 앞으로 3년 후인 2002년까지 2,800km, 2004년 3,700km의 도로망을 갖추게 되는 눈부신 발전을 이루게 된다. 이와 더불어 국내 터널 시공기술의 향상과 환경피해 최소화 노력에 따라 긴 터널이 급속히 증가하고 있는데, 현재 운영중인 1,000m 이상의 고속도로 터널이 3개소에 불과한데 비해 2003년 개통을 목표로 하고 있는 1,000m 이상 터널은 44개소에 이르고 있다.

  • PDF