• Title/Summary/Keyword: Long short-term memory network

Search Result 318, Processing Time 0.029 seconds

Deep Learning-based Rheometer Quality Inspection Model Using Temporal and Spatial Characteristics

  • Jaehyun Park;Yonghun Jang;Bok-Dong Lee;Myung-Sub Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.43-52
    • /
    • 2023
  • Rubber produced by rubber companies is subjected to quality suitability inspection through rheometer test, followed by secondary processing for automobile parts. However, rheometer test is being conducted by humans and has the disadvantage of being very dependent on experts. In order to solve this problem, this paper proposes a deep learning-based rheometer quality inspection system. The proposed system combines LSTM(Long Short-Term Memory) and CNN(Convolutional Neural Network) to take advantage of temporal and spatial characteristics from the rheometer. Next, combination materials of each rubber was used as an auxiliary input to enable quality conformity inspection of various rubber products in one model. The proposed method examined its performance with 30,000 validation datasets. As a result, an F1-score of 0.9940 was achieved on average, and its excellence was proved.

Speech Emotion Recognition in People at High Risk of Dementia

  • Dongseon Kim;Bongwon Yi;Yugwon Won
    • Dementia and Neurocognitive Disorders
    • /
    • v.23 no.3
    • /
    • pp.146-160
    • /
    • 2024
  • Background and Purpose: The emotions of people at various stages of dementia need to be effectively utilized for prevention, early intervention, and care planning. With technology available for understanding and addressing the emotional needs of people, this study aims to develop speech emotion recognition (SER) technology to classify emotions for people at high risk of dementia. Methods: Speech samples from people at high risk of dementia were categorized into distinct emotions via human auditory assessment, the outcomes of which were annotated for guided deep-learning method. The architecture incorporated convolutional neural network, long short-term memory, attention layers, and Wav2Vec2, a novel feature extractor to develop automated speech-emotion recognition. Results: Twenty-seven kinds of Emotions were found in the speech of the participants. These emotions were grouped into 6 detailed emotions: happiness, interest, sadness, frustration, anger, and neutrality, and further into 3 basic emotions: positive, negative, and neutral. To improve algorithmic performance, multiple learning approaches were applied using different data sources-voice and text-and varying the number of emotions. Ultimately, a 2-stage algorithm-initial text-based classification followed by voice-based analysis-achieved the highest accuracy, reaching 70%. Conclusions: The diverse emotions identified in this study were attributed to the characteristics of the participants and the method of data collection. The speech of people at high risk of dementia to companion robots also explains the relatively low performance of the SER algorithm. Accordingly, this study suggests the systematic and comprehensive construction of a dataset from people with dementia.

Experimental Comparison of Network Intrusion Detection Models Solving Imbalanced Data Problem (데이터의 불균형성을 제거한 네트워크 침입 탐지 모델 비교 분석)

  • Lee, Jong-Hwa;Bang, Jiwon;Kim, Jong-Wouk;Choi, Mi-Jung
    • KNOM Review
    • /
    • v.23 no.2
    • /
    • pp.18-28
    • /
    • 2020
  • With the development of the virtual community, the benefits that IT technology provides to people in fields such as healthcare, industry, communication, and culture are increasing, and the quality of life is also improving. Accordingly, there are various malicious attacks targeting the developed network environment. Firewalls and intrusion detection systems exist to detect these attacks in advance, but there is a limit to detecting malicious attacks that are evolving day by day. In order to solve this problem, intrusion detection research using machine learning is being actively conducted, but false positives and false negatives are occurring due to imbalance of the learning dataset. In this paper, a Random Oversampling method is used to solve the unbalance problem of the UNSW-NB15 dataset used for network intrusion detection. And through experiments, we compared and analyzed the accuracy, precision, recall, F1-score, training and prediction time, and hardware resource consumption of the models. Based on this study using the Random Oversampling method, we develop a more efficient network intrusion detection model study using other methods and high-performance models that can solve the unbalanced data problem.

Fake News Detection Using CNN-based Sentiment Change Patterns (CNN 기반 감성 변화 패턴을 이용한 가짜뉴스 탐지)

  • Tae Won Lee;Ji Su Park;Jin Gon Shon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.4
    • /
    • pp.179-188
    • /
    • 2023
  • Recently, fake news disguises the form of news content and appears whenever important events occur, causing social confusion. Accordingly, artificial intelligence technology is used as a research to detect fake news. Fake news detection approaches such as automatically recognizing and blocking fake news through natural language processing or detecting social media influencer accounts that spread false information by combining with network causal inference could be implemented through deep learning. However, fake news detection is classified as a difficult problem to solve among many natural language processing fields. Due to the variety of forms and expressions of fake news, the difficulty of feature extraction is high, and there are various limitations, such as that one feature may have different meanings depending on the category to which the news belongs. In this paper, emotional change patterns are presented as an additional identification criterion for detecting fake news. We propose a model with improved performance by applying a convolutional neural network to a fake news data set to perform analysis based on content characteristics and additionally analyze emotional change patterns. Sentimental polarity is calculated for the sentences constituting the news and the result value dependent on the sentence order can be obtained by applying long-term and short-term memory. This is defined as a pattern of emotional change and combined with the content characteristics of news to be used as an independent variable in the proposed model for fake news detection. We train the proposed model and comparison model by deep learning and conduct an experiment using a fake news data set to confirm that emotion change patterns can improve fake news detection performance.

Radar rainfall prediction based on deep learning considering temporal consistency (시간 연속성을 고려한 딥러닝 기반 레이더 강우예측)

  • Shin, Hongjoon;Yoon, Seongsim;Choi, Jaemin
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.5
    • /
    • pp.301-309
    • /
    • 2021
  • In this study, we tried to improve the performance of the existing U-net-based deep learning rainfall prediction model, which can weaken the meaning of time series order. For this, ConvLSTM2D U-Net structure model considering temporal consistency of data was applied, and we evaluated accuracy of the ConvLSTM2D U-Net model using a RainNet model and an extrapolation-based advection model. In addition, we tried to improve the uncertainty in the model training process by performing learning not only with a single model but also with 10 ensemble models. The trained neural network rainfall prediction model was optimized to generate 10-minute advance prediction data using four consecutive data of the past 30 minutes from the present. The results of deep learning rainfall prediction models are difficult to identify schematically distinct differences, but with ConvLSTM2D U-Net, the magnitude of the prediction error is the smallest and the location of rainfall is relatively accurate. In particular, the ensemble ConvLSTM2D U-Net showed high CSI, low MAE, and a narrow error range, and predicted rainfall more accurately and stable prediction performance than other models. However, the prediction performance for a specific point was very low compared to the prediction performance for the entire area, and the deep learning rainfall prediction model also had limitations. Through this study, it was confirmed that the ConvLSTM2D U-Net neural network structure to account for the change of time could increase the prediction accuracy, but there is still a limitation of the convolution deep neural network model due to spatial smoothing in the strong rainfall region or detailed rainfall prediction.

A Study on Performance Improvement of Recurrent Neural Networks Algorithm using Word Group Expansion Technique (단어그룹 확장 기법을 활용한 순환신경망 알고리즘 성능개선 연구)

  • Park, Dae Seung;Sung, Yeol Woo;Kim, Cheong Ghil
    • Journal of Industrial Convergence
    • /
    • v.20 no.4
    • /
    • pp.23-30
    • /
    • 2022
  • Recently, with the development of artificial intelligence (AI) and deep learning, the importance of conversational artificial intelligence chatbots is being highlighted. In addition, chatbot research is being conducted in various fields. To build a chatbot, it is developed using an open source platform or a commercial platform for ease of development. These chatbot platforms mainly use RNN and application algorithms. The RNN algorithm has the advantages of fast learning speed, ease of monitoring and verification, and good inference performance. In this paper, a method for improving the inference performance of RNNs and applied algorithms was studied. The proposed method used the word group expansion learning technique of key words for each sentence when RNN and applied algorithm were applied. As a result of this study, the RNN, GRU, and LSTM three algorithms with a cyclic structure achieved a minimum of 0.37% and a maximum of 1.25% inference performance improvement. The research results obtained through this study can accelerate the adoption of artificial intelligence chatbots in related industries. In addition, it can contribute to utilizing various RNN application algorithms. In future research, it will be necessary to study the effect of various activation functions on the performance improvement of artificial neural network algorithms.

A Comparative Study of Machine Learning Algorithms Based on Tensorflow for Data Prediction (데이터 예측을 위한 텐서플로우 기반 기계학습 알고리즘 비교 연구)

  • Abbas, Qalab E.;Jang, Sung-Bong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.3
    • /
    • pp.71-80
    • /
    • 2021
  • The selection of an appropriate neural network algorithm is an important step for accurate data prediction in machine learning. Many algorithms based on basic artificial neural networks have been devised to efficiently predict future data. These networks include deep neural networks (DNNs), recurrent neural networks (RNNs), long short-term memory (LSTM) networks, and gated recurrent unit (GRU) neural networks. Developers face difficulties when choosing among these networks because sufficient information on their performance is unavailable. To alleviate this difficulty, we evaluated the performance of each algorithm by comparing their errors and processing times. Each neural network model was trained using a tax dataset, and the trained model was used for data prediction to compare accuracies among the various algorithms. Furthermore, the effects of activation functions and various optimizers on the performance of the models were analyzed The experimental results show that the GRU and LSTM algorithms yields the lowest prediction error with an average RMSE of 0.12 and an average R2 score of 0.78 and 0.75 respectively, and the basic DNN model achieves the lowest processing time but highest average RMSE of 0.163. Furthermore, the Adam optimizer yields the best performance (with DNN, GRU, and LSTM) in terms of error and the worst performance in terms of processing time. The findings of this study are thus expected to be useful for scientists and developers.

Comparison of Models for Stock Price Prediction Based on Keyword Search Volume According to the Social Acceptance of Artificial Intelligence (인공지능의 사회적 수용도에 따른 키워드 검색량 기반 주가예측모형 비교연구)

  • Cho, Yujung;Sohn, Kwonsang;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.103-128
    • /
    • 2021
  • Recently, investors' interest and the influence of stock-related information dissemination are being considered as significant factors that explain stock returns and volume. Besides, companies that develop, distribute, or utilize innovative new technologies such as artificial intelligence have a problem that it is difficult to accurately predict a company's future stock returns and volatility due to macro-environment and market uncertainty. Market uncertainty is recognized as an obstacle to the activation and spread of artificial intelligence technology, so research is needed to mitigate this. Hence, the purpose of this study is to propose a machine learning model that predicts the volatility of a company's stock price by using the internet search volume of artificial intelligence-related technology keywords as a measure of the interest of investors. To this end, for predicting the stock market, we using the VAR(Vector Auto Regression) and deep neural network LSTM (Long Short-Term Memory). And the stock price prediction performance using keyword search volume is compared according to the technology's social acceptance stage. In addition, we also conduct the analysis of sub-technology of artificial intelligence technology to examine the change in the search volume of detailed technology keywords according to the technology acceptance stage and the effect of interest in specific technology on the stock market forecast. To this end, in this study, the words artificial intelligence, deep learning, machine learning were selected as keywords. Next, we investigated how many keywords each week appeared in online documents for five years from January 1, 2015, to December 31, 2019. The stock price and transaction volume data of KOSDAQ listed companies were also collected and used for analysis. As a result, we found that the keyword search volume for artificial intelligence technology increased as the social acceptance of artificial intelligence technology increased. In particular, starting from AlphaGo Shock, the keyword search volume for artificial intelligence itself and detailed technologies such as machine learning and deep learning appeared to increase. Also, the keyword search volume for artificial intelligence technology increases as the social acceptance stage progresses. It showed high accuracy, and it was confirmed that the acceptance stages showing the best prediction performance were different for each keyword. As a result of stock price prediction based on keyword search volume for each social acceptance stage of artificial intelligence technologies classified in this study, the awareness stage's prediction accuracy was found to be the highest. The prediction accuracy was different according to the keywords used in the stock price prediction model for each social acceptance stage. Therefore, when constructing a stock price prediction model using technology keywords, it is necessary to consider social acceptance of the technology and sub-technology classification. The results of this study provide the following implications. First, to predict the return on investment for companies based on innovative technology, it is most important to capture the recognition stage in which public interest rapidly increases in social acceptance of the technology. Second, the change in keyword search volume and the accuracy of the prediction model varies according to the social acceptance of technology should be considered in developing a Decision Support System for investment such as the big data-based Robo-advisor recently introduced by the financial sector.

A Study on Deep Learning Model for Discrimination of Illegal Financial Advertisements on the Internet

  • Kil-Sang Yoo; Jin-Hee Jang;Seong-Ju Kim;Kwang-Yong Gim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.8
    • /
    • pp.21-30
    • /
    • 2023
  • The study proposes a model that utilizes Python-based deep learning text classification techniques to detect the legality of illegal financial advertising posts on the internet. These posts aim to promote unlawful financial activities, including the trading of bank accounts, credit card fraud, cashing out through mobile payments, and the sale of personal credit information. Despite the efforts of financial regulatory authorities, the prevalence of illegal financial activities persists. By applying this proposed model, the intention is to aid in identifying and detecting illicit content in internet-based illegal financial advertisining, thus contributing to the ongoing efforts to combat such activities. The study utilizes convolutional neural networks(CNN) and recurrent neural networks(RNN, LSTM, GRU), which are commonly used text classification techniques. The raw data for the model is based on manually confirmed regulatory judgments. By adjusting the hyperparameters of the Korean natural language processing and deep learning models, the study has achieved an optimized model with the best performance. This research holds significant meaning as it presents a deep learning model for discerning internet illegal financial advertising, which has not been previously explored. Additionally, with an accuracy range of 91.3% to 93.4% in a deep learning model, there is a hopeful anticipation for the practical application of this model in the task of detecting illicit financial advertisements, ultimately contributing to the eradication of such unlawful financial advertisements.

Development of a complex failure prediction system using Hierarchical Attention Network (Hierarchical Attention Network를 이용한 복합 장애 발생 예측 시스템 개발)

  • Park, Youngchan;An, Sangjun;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.127-148
    • /
    • 2020
  • The data center is a physical environment facility for accommodating computer systems and related components, and is an essential foundation technology for next-generation core industries such as big data, smart factories, wearables, and smart homes. In particular, with the growth of cloud computing, the proportional expansion of the data center infrastructure is inevitable. Monitoring the health of these data center facilities is a way to maintain and manage the system and prevent failure. If a failure occurs in some elements of the facility, it may affect not only the relevant equipment but also other connected equipment, and may cause enormous damage. In particular, IT facilities are irregular due to interdependence and it is difficult to know the cause. In the previous study predicting failure in data center, failure was predicted by looking at a single server as a single state without assuming that the devices were mixed. Therefore, in this study, data center failures were classified into failures occurring inside the server (Outage A) and failures occurring outside the server (Outage B), and focused on analyzing complex failures occurring within the server. Server external failures include power, cooling, user errors, etc. Since such failures can be prevented in the early stages of data center facility construction, various solutions are being developed. On the other hand, the cause of the failure occurring in the server is difficult to determine, and adequate prevention has not yet been achieved. In particular, this is the reason why server failures do not occur singularly, cause other server failures, or receive something that causes failures from other servers. In other words, while the existing studies assumed that it was a single server that did not affect the servers and analyzed the failure, in this study, the failure occurred on the assumption that it had an effect between servers. In order to define the complex failure situation in the data center, failure history data for each equipment existing in the data center was used. There are four major failures considered in this study: Network Node Down, Server Down, Windows Activation Services Down, and Database Management System Service Down. The failures that occur for each device are sorted in chronological order, and when a failure occurs in a specific equipment, if a failure occurs in a specific equipment within 5 minutes from the time of occurrence, it is defined that the failure occurs simultaneously. After configuring the sequence for the devices that have failed at the same time, 5 devices that frequently occur simultaneously within the configured sequence were selected, and the case where the selected devices failed at the same time was confirmed through visualization. Since the server resource information collected for failure analysis is in units of time series and has flow, we used Long Short-term Memory (LSTM), a deep learning algorithm that can predict the next state through the previous state. In addition, unlike a single server, the Hierarchical Attention Network deep learning model structure was used in consideration of the fact that the level of multiple failures for each server is different. This algorithm is a method of increasing the prediction accuracy by giving weight to the server as the impact on the failure increases. The study began with defining the type of failure and selecting the analysis target. In the first experiment, the same collected data was assumed as a single server state and a multiple server state, and compared and analyzed. The second experiment improved the prediction accuracy in the case of a complex server by optimizing each server threshold. In the first experiment, which assumed each of a single server and multiple servers, in the case of a single server, it was predicted that three of the five servers did not have a failure even though the actual failure occurred. However, assuming multiple servers, all five servers were predicted to have failed. As a result of the experiment, the hypothesis that there is an effect between servers is proven. As a result of this study, it was confirmed that the prediction performance was superior when the multiple servers were assumed than when the single server was assumed. In particular, applying the Hierarchical Attention Network algorithm, assuming that the effects of each server will be different, played a role in improving the analysis effect. In addition, by applying a different threshold for each server, the prediction accuracy could be improved. This study showed that failures that are difficult to determine the cause can be predicted through historical data, and a model that can predict failures occurring in servers in data centers is presented. It is expected that the occurrence of disability can be prevented in advance using the results of this study.